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1. INTRODUCTION

The idea of ultra-high-speed directional relays was first conceived in the late nineteen-seventies
[1-4]. There has been confusion between relays based on superimposed quantities and relays
based on traveling waves. In early publications, both principles were discussed at the same time.
This is because relays based on traveling waves use the superimposed voltages and currents to
assess the changes occurring on the line [5-6]. Equally, few details were disclosed in the
beginning about the practical aspects of the algorithms. More recently, two papers [7-8] discuss
the use of superimposed quantities to assess fault direction. For the applications discussed in
these papers, there was no harsh timing requirement. This allowed using comparators processed
in the frequency domain with the conventional use of phasors.

The purpose of this paper is to show that linear circuit theory and conventional comparators
techniques can fully characterize the performance (speed, advantages, and shortcomings) of
directional elements based on time-varying waveforms or their phasors. In addition, we show
that superimposed quantities are suitable for fault-type selection given the proper design and
supervision considerations.

2. DERIVATION OF SUPERIMPOSED QUANTITIES USING THE SUPERPOSITION
PRINCIPLE

2.1 Fault Analysis Using the Superposition Principle

Consider the single-line diagram of Figure 1, where a fault is applied through a resistance Rf at a
distance m per-unit line length from the relay at the left bus.
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Figure 1: Example System Single-Line Diagram
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Figure 2c: Pure-Fault Network b) A voltage source, Ef, must be applied at

the fault point.
The magnitude of Ef is equal to the voltage level existing at the fault location before application
of the fault. The source phase angle is opposite to that of the pre-fault voltage phase angle at the
fault point.

Determine either a faulted circuit voltage (V) or a current (I) by summing two components, pre-
fault plus pure-fault, as provided by the superposition principle (in all equations, capital letters
represent phasors, small letters are scalars):

V = Vpre_ﬂ[ + AV (2.2)

I =1 + Al

pre — flt

The pure-fault network currents and voltages are zero before the fault. Therefore, any value they
have due to a fault condition represents a change or delta quantity. For this reason, they are
called incremental or superimposed quantities and are represented with a prefix A to indicate the
change with respect to the pre-fault circuit values.



3. SUPERIMPOSED QUANTITIES FOR CONVENTIONAL SHUNT FAULTS
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The circuits shown in Figures 2a, 2b, and 2c represent a
three-phase fault and cannot be used to analyze other
conventional shunt faults. To investigate different faults,
you must use the appropriate sequence network to
represent the pure-fault network. Because the sequence
network is used to represent the pure-fault network, all
sequence quantities are represented as delta quantities.

3.1 Analysis of a Phase A-to-Ground Fault

Figure 3 represents the pure-fault network of a phase A-
to-ground fault. Following the circuit of Figure 1, the
phase A pre-fault or load current is expressed as:

E,e(l—hee

o = ZsTy ZLT+ ZR1 -1
The voltage Ef at the fault point before the fault is
applied is given as:
Ef =E, —(ZS1+meZLl)e 1, (3.2)

The incremental phase A current, at the relay, is provided
by:

Al =Cl Al +C2e AL, +COeAl, (3.3)

and therefore, according to the superposition principle,
the total phase A current is:

L,g=Cl e Al,; + C2 ¢ AL, + CO ® Al +1,, (3.4)

In these expressions, C1, C2, and CO are the current
distribution factors [9].

Perform the same analysis to calculate the voltage at the
relay. The phase A pre-fault voltage is:

Figure 3: Pure-Fault Sequence V Aror =meZl.lel . +Ef 3.5
Network for a Single-Phase-to- AR(pre-AlD - )
Ground Fault
The incremental phase A voltage at the relay is:
AV, g= —Cl e Al,;#ZS1 —C2 e Al #ZS1 - CO e Al . ® ZSO (3.6)

Using the superposition principle, the fault voltage at the relay is:

Vg = — 2C,0Al,;0ZS] —C,eAl,;ZS0+Ef + meZLl o1, 3.7)

The principles used in this analysis are easily extended to other types of shunt faults as double-
phase and double-phase-to-ground faults by replacing the fault sequence network with the
appropriate sequence network for the fault type of interest.



3.2 Definition of an Incremental Impedance

We define an incremental impedance as the ratio of an incremental voltage phasor divided by an
incremental current phasor. The incremental impedance can be single-phase A, B, or C, or it can
be a differential with the voltage (and current) being taken between two phases (AB, BC, or CA).
Finally, it can be computed with incremental sequence quantities. As an example, the phase A
incremental impedance, as measured at the relay, for a phase A-to-ground fault is given as:

AV, AZ . == (Cl eZS1 e Al + C2 e ZS1 oAl + CO @ ZS0 e Alp) (3.8)
Al,, ~ ~TART CleAl,; +C2e Al +COe Al '
or:
AV, _ —(2eC1 ¢ZS1 + CO0 ¢ZS0)
AL, ~ Mk = CI+C2+C0 (3.9)
The positive-sequence impedance at the relay for a phase A-to-ground fault is provided by:
_AVIR __CI.ZSI.AIIF _
A1y = All, - CleALL =-7S1 (3.10)
The incremental impedance across phases A and B is provided by:
— _ 42
AZAB, = A(VA - VB); _ 2 oC]1 oZS1 oAl o(1 —a°) _ 781 3.11)

A(TA -1B)y 2 oC1 oAl o(1 — a?)
In Equation 3.11, a is the operator equal to 1.£120°. Notice that the incremental impedance

across two phases (one of them being phase A) or using the positive-sequence quantities is equal
to the negative of the source impedance behind the relay.

3.3 Incremental Impedances for Other Types of Shunt Faults

In the previous section, we showed that for a single-phase-to-ground fault, properly selected
incremental impedances equaled the negative of the source impedance behind the relay. The
same principle applies for the other types of shunt faults. Table 1 lists the incremental
impedances equal to the negative of the source impedance for the four basic fault types.

Table 1. Incremental Impedances Being Equal to -ZS1

Fault Type Incremental Impedances

A-G AZab, AZca, AZ1

B-C AZb, AZc, AZab, AZbc, AZca, AZ1
BC-G AZab, AZbc, AZca, AZ1

ABC AZa, AZb, AZc, AZab, AZbc, AZca, AZ1

It is interesting to note that the incremental impedances computed across two phases and the
positive-sequence impedance are always equal to —ZS1 for all fault types.



4. RELATION BETWEEN SUPERIMPOSED QUANTITIES AND SEQUENCE
QUANTITIES

Looking at the pure-fault sequence network of Figure 3, all sequence voltages and currents are
represented as superimposed quantities. Sequence quantities are, however, normally computed
based on the measured fault voltages and currents. For instance, the pure-fault positive-sequence
current at the fault is provided as:

Al = Al + aeAl, + a’eAl, 4.1)
Normally we would compute the positive-sequence current as:
I =1,+ael, +a’l, 4.2)
Given that any phase current is equal to the pure-fault phase current plus the load:
I =Al+ 1, (4.3)

we end up with the relation that the computed positive sequence current and the pure-fault
positive-sequence current are different by a quantity equal to the load:

Iy =AlL+ 1, (4.4)

When we apply the same reasoning to both the negative- and zero-sequence currents, the load
current vanishes if we assume it to be a balanced quantity. For these two sequence types, the
calculated sequence quantities are equal to the pure-fault quantities:

Ly=ALy and I =Al, 4.5)

In conclusion, with the exception of positive-sequence quantities, the calculated sequence
quantities are superimposed quantities.

5. FUNDAMENTAL RELATION BETWEEN SUPERIMPOSED VOLTAGE AND
SUPERIMPOSED CURRENT

5.1 Fundamental Directional Equation

As we discussed above, selecting the proper quantities at the relay location for each forward fault-
type yields an incremental impedance equal to the negative of the positive-sequence source

impedance ZS1:
(post—fault Vi) — (pre—fault Vi) AV,
= = =- 1
AZy (post—fault I;) — (pre—fault I;) ~ Alg 251 SR
Alternatively, the same condition can be expressed as:
AV (5.2)

2R 1
Al o (— ZS1)

Equation 5.2 indicates that during a fault, the magnitude and phase of the incremental voltage
waveform (or phasor) are equal to the magnitude and phase of the incremental current waveform
(or phasor) multiplied by the negative of the source impedance behind the relay. This principle



has been exploited to define a directional element [3, 8, 10, 11]. If the scalar product between the
incremental voltage phasor and the incremental current phasor, multiplied by the negative of the
source impedance, is positive — a forward fault direction is declared:

real(AVy e conj(Al; ® (-ZS1)) = Avy ® Ai, ezsl e cos 0 (5.3)

In this expression, 6 represents any phase angle mismatch that could exist in the source phase
angle representation. Normally 0 is equal to zero. The magnitude of the source impedance, being
always positive, can be set to unity without affecting the basic principle:

real(AVy @ conj(Al, ® (£-ZS1)) = Avy ® Aiy @ cos O (5.4)

If the result of Equation 5.4 is negative, the direction is reverse. Thus, for reverse faults the
impedance presented to the relay is the sum of the line impedance plus the remote source
impedance.

5.2 Impact of Parallel Lines on the Value of the Source Impedance

In more complex networks, like the double circuit shown in Figure 4, even the positive-sequence
incremental impedance fails to exactly measure the source impedance behind the relay for three-
phase faults.

O+ = H_+®

m

l—>

Figure 4: Double Circuit Network

In this case, AZ1 is provided by:

AZI = =781 (5.5)
m
AR Sl i
ZL 7L | 7Ry + 1—2mZL

For m = 0, we have

_7S1 o( 26ZR1 + ZL)

A2l = T ¥ 2eZR1 + ZL)

(5.6)

andm=1:
AZ1 = — 20781 (5.7)

Equations 5.6 and 5.7 indicate that the positive-sequence incremental impedance varies,
depending on the location of the fault. The difference in amplitude varies from a small fraction to
twice its nominal value.

If the value of the local source impedance varies, it is important the new value remains highly
inductive to maintain directionality. Directionality, as provided by Equation 5.3, is still
maintained if the mismatch 0 remains acceptable. Note that source impedance magnitude



variations are not important as it can be set to unity. However, the source impedance magnitude
must not be such that the measured current decreases below the sensitivity threshold of the
measuring relay.

5.3 Conventional Networks and Exception of Series Compensated Networks

For conventional networks, the source impedance behind a relay is inductive, and applying
Equation 5.3 for directionality is applicable without restriction. For series compensated lines, as
shown in Figure 5, an adverse situation might develop if the directional relay voltage is supplied
from the line side of the capacitors. If the capacitor impedance becomes greater than the original
source impedance (ZS1), then the source impedance behind the relay is capacitive and the
directional relay makes an incorrect directional declaration.

751 ZL1 ZR1
(E— Q= ()
ZS1 AV 7Lt (1-m)ZL1 ZR1

— QT
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+

Figure 5: Series Compensated Line

6. EMULATION OF THE SOURCE IMPEDANCE BEHIND A RELAY USING A MimiC

6.1 Definition of a Mimic Filter

In Equation 5.3, the incremental current phasor must be multiplied by the negative of the unit
source impedance behind the relay to get a compensated current. This can be accomplished in the
time domain by processing the current waveform through a high-pass filter, or mimic, of the form
[12]:

K{d+serT) (6.1)

In so doing, we fulfill two objectives:
e multiply the current phasor by the unit source impedance behind the relay.
e remove any dc offset present in the waveform.

Reference [12] shows that the digital form (using the z transform) of the analog high-pass filter
expressed by Equation 6.1 is provided by:

K[l+1)-1,02)] (6.2)

where T is the filter time constant and K is chosen such that at 60 Hz, the gain is 1.



6.2 Removal of DC Offset by the Mimic Filter

Figure 6 illustrates the removal of a dc offset added to a sine wave after it has been processed
through a mimic filter in the time domain. Reference [12] shows that proper removal of any dc
offset effect occurs over a large interval of the network X/R ratio.

6.3 Frequency Response of the Mimic

Figure 7 shows the frequency response of the mimic filter. From this figure, notice that the
mimic filter is a high-pass filter. While the mimic filter does remove dc from the original
waveform, the higher frequency components (if they exist) are amplified.

2_. — T T T T T T T I ] 6_ T T T T
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Figure 6: Mimic Filter Removes DC Offset Figure 7: Mimic Frequency Response Passes
High Frequencies

6.4 Relationship Between the Mimic, Line Impedance, and Source Impedance Behind
the Relay

When we implement the mho type fault detector, we must compute two voltage phasors: the
operating voltage and the polarizing voltage [9, 13-15]:

S, =l,ekeZL1l -V, (6.3)

op

S, =V, (6.4)

In these two equations, we have:
V;
I particular loop current phasor
keZLL1 = reach of the mho element

particular loop voltage phasor

In this example, we show the simpler case of a self-polarizing mho element. When computing
the operating voltage, we must multiply the loop current by the positive-sequence line impedance
scaled by the reach setting. This can be done in the frequency domain as shown in Equation 6.4
by multiplying two complex numbers. It can also be performed in the time domain by equating
the phase angle of the mimic of the preceding section to the phase angle of the line and
processing the current waveform through the high-pass filter. Next, multiply the phasor of the



replica line impedance compensated current by the magnitude of the line reach. The advantage of
this technique is that any dc offset is automatically removed. Equation 6.3 then becomes:

S =Ir. (IZGZLI) .k. le _Vr (6.5)

op
Letting the positive-sequence line impedance equal:
ZL1 =711 £0,, (6.5)
we would then have:
arctg (w e 1)) =0y, (6.6)

The same compensated current can now be used to compute the scalar product of Equation 5.4
necessary for assessing directionality of the fault. In doing this, the local source phase angle is
equated to the line angle. If both the protected line and source are inductive, even a large
mismatch between these angles does not adversely effect the directionality. In theory, the
mismatch 6 could be as high as 90° before changing the sign of the scalar product.

In a practical digital relay design, the high-pass filter corresponding to Equation 6.2 processes all
three phase currents after the relay converts the currents to digital quantities. Then, any algorithm
for phasor computation is applied and the compensated current phasors are available for any
further processing.

7. MEASUREMENT OF SUPERIMPOSED VOLTAGES AND CURRENTS

7.1 Definition of a Delta-Filter and its Properties

The conventional circuit used for the purpose of extracting a superimposed quantity is known as a
delta-filter and is represented in Figure 8. The basic delta-filter subtracts from a time waveform
the same waveform delayed by an integral number times the waveform period.

In a delta-filter, the delayed waveform is called the reference signal. The delay implemented in
the filter is called the delta-filter delay.

v(t) >+ >  Av(t) = v(t) - v(t-nT)
I/ Reference
-nTs signal

Figure 8: Concept of a Delta-Filter for a Time-Varying Waveform

A
]

7.2 Frequency Response and Time-Response to Step-Function of a Delta-Filter

A delta-filter is a time-invariant linear filter. Figure 9 shows the frequency response of a delta-
filter with a delay corresponding to one 60-Hz period. This plot, however, is misleading because
you might conclude that a delta-filter rejects the 60-Hz fundamental component and the
harmonics. The filter response to a unit-step 60-Hz sine wave is more revealing (see Figure 10).
This figure shows that the filter output over an interval of time equal to one period is equal to the
change impressed on the input waveform. In this case, the change is a unit 60-Hz period because
the waveform originally did not exist.



i
AMPLITUDE
(=

0 100 200 300 400 500 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07
FREQUENCY (HZ) TIME (S)

Figure 9: Frequency Response of a Delta-Filter Figure 10: Time-Response to 60-Hz Unit Step
Function

7.3 Adverse Effects on a Delta-Filter

A delta-filter should be tuned to a single frequency. Normally this is the rated network
frequency: 50 or 60 Hz. Any change occurring after a fault on any frequency component other
than the fundamental has an adverse effect on the delta-filter output.

A second important issue with conventional delta-filters is that the reference signal is constantly
changing with time. Remember that we wish to subtract the waveform existing before the fault.
In a situation where we have a succession of network changes that last longer that the filter delay,
the reference signal no longer satisfies this requirement.

A last issue concerns the fact that some changes in a network topology cannot be handled by
delta-filters. One example includes simultaneously energizing a line from both the local and
remote terminals (such as a high-speed reclose). In this example, the delta-filter does not produce
relevant superimposed quantities. Do not assume that the pre-event line currents have zero
magnitude because the line did not “exist” electrically before the line breakers were closed.

7.4 Application of Delta-Filters to Phasors

Delta-filters can also be applied to phasors. The concept is illustrated in Figure 11. To
accomplish this, you must have a time-invariant phasor or a phasor that remains still in the
complex plane when no change occurs on the waveform. The delay implemented into the delta-
filter need not be equal any longer than an integral number times the waveform period.

When no change is taking place on a network, the incremental or superimposed quantities are
zero. We can take advantage of this property and implement a change detector using the delta-
filter as shown in Figure 12. The magnitude of the incremental phasor is compared to a threshold
INCR_TRH. When the change becomes greater than the threshold, a variable FREEZ indicating
a change is set to 1. Due to the time delay drop-out, the variable remains asserted for a number of
samples.

One of the shortcomings of the conventional delta-filter is its difficulty in coping with a
succession of changes that last an interval of time longer than the delta-filter imbedded delay.

10



This situation is easily handled if the reference phasor, as shown in Figure 11, is maintained
during the evolving events. To achieve this, we introduce the concept of the “double-windowed”
delta-filter (patent pending) as represented in Figure 13. With this new principle, as soon as a
change is detected, the value of the reference phasor is latched to a memory register. A second
incremental quantity AV2 is then generated using the memorized phasor as its reference. The
main property of this second incremental quantity is that its reference phasor is fixed. If a series
of changes occur on the network, the reference is always the same when computing the
incremental value.

Time-Invariant V(t)
v(t) —>{ Phasor Filtering »>Q AV(t) = V(t) - V(t-D)
System Time-Invariant
»| ¢-Ds Reference Phasor

Figure 11. Concept of a Delta-Filter Applied to a Time-Invariant Phasor
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v(t) —| Phasor Filtering »@O—e—> AV(t) = V(t) - V(t-nT)
System -

Y
(¢

Reference Phasor

Figure 12. Concept of Delta-Filter Applied with a Change Detector
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Figure 13. Concept of a “Double-Windowed” Delta-Filter

8. IMPLEMENTATION OF DIRECTIONAL ELEMENTS IN THE TIME AND FREQUENCY
DOMAINS

8.1 Implementation in the Time Domain

Using the scheme shown in Figure 14, we can implement a directional element which uses time
domain superimposed quantities. The combination of the integrator and threshold detector
establishes a phase angle comparison [9]. The phase angle comparison establishes the integrator
output polarity: if the incremental voltage and the compensated incremental current waveforms
are within £90°, the integrator output is positive. The superimposed voltage and current are
selected such that for a particular fault, the incremental impedance is equal to (-=ZS1). The
superimposed quantities are normally zero if no change occurs on the network. If a forward fault
occurs, assume for the sake of simplicity, the incremental voltage at the delta-filter output is a
sine wave as in:

Avr(t) = Avg @ sin (0t + ) 8.1)

Using Equation 5.2 and accounting for any phase angle mismatch 6 between the mimic and the
source impedance, the incremental current after the mimic filter is provided by:

—Airc(t) = Aig ® sin (0t + Y+ 0) (8.2)

Integrating the product of the two incremental quantities results in the following equation:
T
COMP(t) = % f Avy @ sin (of + ) ® Aig @ sin (ot +y +0) o dt (8.3)
0

After an interval of time equal to one period, the integral has the value:

12



COMP(T) =Avy e Aig ®ecos O (8.4)

The integral output at the end of the integration period corresponds to the scalar product of
Equation 5.4.

—Air(t) Reset
—Airc(t) Every T Threshold
R — { Detector
f dt I—.
: — |

vr(t) —{ LPF NGO
] e
Delay T

Figure 14: Time-Domain Generic Superimposed Quantities Directional Element

Figure 15 shows the integrator output COMP(t) for a forward fault with 6 = 0° (perfect match
between the mimic and the source impedance angles). Obviously the comparator output is
positive from fault inception until time equals T. The basic issue regarding this type of
comparator is the following: is the sign of the integrator output COMP(t) always the same as the
sign of cos 0 as time progresses from zero to T after fault inception?

To answer this question, let us look at the integrator output in Figure 16 for a reverse fault with
v = 0° and an impedance mismatch 0 varying from 90 to 180°. With an ideal phase comparator,
the output should always be negative. The normalized (with unit incremental voltage and
current) maximum positive value calculated by the comparator is 0.16. As noted in Reference
[16], the integrator output should be compared to this same threshold before declaring a forward
fault. Using the 0.16 threshold results in the following comparison:

COMP(t) > 0.16 eAv, ® Ai, (8.5)

Figure 15 shows this 0.16 threshold. From Figure 15 notice the quick-response time: better than
one-quarter-cycle, for a forward fault. There is, however, a shortcoming in this scheme. The
threshold to which the integrator output has to be compared, incorporates the product of the
incremental voltage and incremental current magnitudes. Thus, these two values must then be
user-entered settings in a comprehensive scheme. The directional element sensitivity is also
impacted: if a fault occurs, such that the subsequent changes in the voltage and the current are
smaller than the entered settings, the relay does not make a directional declaration [16].

13
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Figure 15: Comparator Output for a Forward Fault With 6 = 0° and y Varying
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Figure 16: Comparator Output for a Forward Fault With y = 0° and 6 = 90, 135, and 180°

8.2 Implementation in the Frequency Domain

The main advantage of implementing a superimposed directional element in the time domain is
the speed achieved (theoretically, less than one-quarter-cycle). There are two drawbacks:
practically no filtering and the anticipated voltage and current changes have to be defined as
settings. These two shortcomings are overcome by implementing the directional element using
frequency domain input quantities. The implementation of Equation 5.4 (referenced below as
Equation 8.6), representing the basic principle of a directional element in the frequency domain
(using phasors), is shown as a straightforward design in Figure 17.

real(AVy e conj(Al; ® (£L—ZS1)) = Avg ® Ai; @ cos 0 (8.6)
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The speed of the directional element now depends on the data-window of the selected filtering
system. Fast direction assessment is still achieved. For example, with a one-half-cycle Fourier
filtering system for phasor evaluation, the response time is less than one-half-cycle. Schemes
using filtering are then superior to schemes implemented in the time-domain because there is no
need to enter the anticipated changes as settings.

Time-invariant —Alre(t) Threshold
ir(t) —’ Phasor Filtering >@ l Detector
System mj Scalar —
Product _ 1

Time-invariant

vi(t) —  Phasor Filtering >E
System mj AVr(t)

Figure 17: Frequency-Domain Generic Superimposed Quantities Directional Element

9. IMPLEMENTATION OF COMBINED PHASE-SELECTION AND DIRECTIONAL
ELEMENTS
Fast fault-type selection can be combined with directional assessment using the incremental
impedances based on the differential (across two phases) superimposed voltages and currents. As

shown in Table 2, for the single-line network (Figure 1), for any fault type, the incremental
impedance is always equal to the negative of the source impedance behind the relay.

Table 2. Values of Differential Incremental Impedance

Fault Type AA\I]_: AA\I];CC AA\I]CC:
A-G -ZS1 0/0 -ZS1
B-G -ZS1 -ZS1 0/0
C-G 0/0 -ZS1 -ZS1
A-B, A-B-G -ZS1 -ZS1 -ZS1
B-C, B-C-G -ZS1 -ZS1 -ZS1
C-A, C-A-G -ZS1 -ZS1 -ZS1
A-B-C -ZS1 -ZS1 -ZS1

More useful and revealing information is obtained when the three incremental scalar products
Atab, Atbc, and Atca, corresponding to Equation 5.3 are performed. We define Atab as:

Atab = real[AV,; ® conj(Al ; ® (Z/-ZS1))] (9.1)

In a practical application, the relay could assume that the local source impedance angle equals the
angle of the positive-sequence line impedance. As described earlier, this can be done without
changing the nature of the final results.

Z7S1 = Z711 9.2)

15



With the incremental compensated current defined as:

Al =Alge (1 ZZL1)

(9.3)

where the current angular advance is provided by the mimic filter, we can now define the

incremental scalar products as:

Atab = real [AV ,; econj (—Al 5.)]
Atbe = real [AVy. econj (—Alc,)]

Atca = real [AV, econj (=Al¢,.)]

9.4)
9.5)

(9.6)

The relative values of the three incremental scalar products are shown in Table 3 [17] for
conventional shunt faults. As an example, for an A-phase-to-ground fault, Atab and Atca are
equal to some positive value and Atbc equals zero. An A-phase-to-ground fault could
unequivocally be inferred from the logic shown in Figure 18. In this diagram, CSTA is a constant
number entered as a factory or user setting. To detect a reverse single-phase-to-ground fault,
Atab and Atca must both be negative. In the case of a forward three-phase fault, all three scalar
products are nearly equal and positive. The same logic applies to the other faults.

Table 3: Relation Between the Scalar Products

Fault Type Atab Atbc Atca
A-G Atab 0 Atab
B-G Atab Atab 0
C-G 0 Atbc Atbc
A-B, A-B-G Atab 0.25 e Atab | 0.25 e Atab
B-C, B-C-G 0.25 e Atbc Atbc 0.25 e Atbc
C-A, C-A-G 0.25 e Atca | 0.25 e Atca Atca
A-B-C Atab Atab Atab
v e
ATCA > CSTA —

Figure 18: Logic to Establish a Forward Phase A-to-Ground Fault

10. SUMMARY

Important points presented in this paper include the following:

1. Superimposed or incremental quantities belong to the pure-fault network as defined by
the theory of linear circuits and superposition principle.
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Sequence networks are useful in representing the pure-fault network if we subtract the
load from positive-sequence current.

Phase comparators implemented in the time domain produce ultra-high-speed directional
declarations. The user must enter the minimum anticipated delta-quantities.

Most shortcomings of high-speed directional elements using incremental quantities stem
from the imbedded delta-filters limitations.

We can overcome these shortcomings using sub-cycle filtering system data-windows to
derive the superimposed quantity phasors.

We showed how to combine rapid fault-type selection and directional declaration.
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