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ABSTRACT 

The era of protecting rotating equipment using electromechanical devices has faded away. Today’s motor 
protection is accomplished with digital protective relays. Digital relays are multiphase, multifunction units that offer 
not only protection but also alarming, historical operational data, and communication to other microprocessor-based 
devices in a plant. 

The most important facet in motor protection is the ability to accurately replicate heat flow into and out of a 
motor. 

This paper discusses the dual first order thermal model and its superior ability to protect ac motors from 
overtemperature conditions during starting and running states. 

INTRODUCTION 

Digital relays are multiphase, multifunction microprocessor-based devices. With proper mechanical and electrical 
design precautions, these relays offer highly reliable and advanced protection of power system components. Any 
past protection limitations experienced in the world of electromechanical relays are no longer a factor. If a situation 
can be mathematically described, the microprocessor in a digital relay can be programmed to tackle that problem. 

Because of the immense computing power of today’s microprocessors, digital relays offer additional, highly 
important features to complement protection. They alarm, store historical operating data about the protected 
equipment and the power system it is connected to, and communicate to other microprocessors in the plant, using a 
large selection of communications protocols. Digital relays are also miniature programmable logic controllers 
(PLCs). Relay protective elements, digital inputs, digital outputs, and analog quantities can be used in logic 
statements, generating custom control schemes to suit specific applications. Digital relays are no longer standalone 
protective devices. They can be incorporated into the overall manufacturing process in a plant. 

The world of motor protection presents unique challenges. The most prominent challenge is modeling of motor 
temperature based on electrical current flow. 

This paper discusses the dual first order thermal model, which is based on the thermodynamic laws of heat flow.  

OVERVIEW OF THE FIRST ORDER THERMAL MODEL 

FIGURE 1 illustrates the first order thermal model. The major components of the model are: 

• Heat source. Heat flow from the source, I2r, is measured in watts (W). 

• Thermal capacitance, Cth, which represents a motor with a thermal capacity to absorb heat from the 
heat source. The unit of thermal capacitance is W • s/°C. 

• Thermal resistance, Rth, which represents the heat dissipated by a motor to its surroundings. The unit of 
thermal resistance is °C/W. 
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• Temperature, U. The unit of temperature is °C. 

• Comparator, which compares the calculated motor temperature with a pre-set value based on the motor 
manufacturer’s data. 
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FIGURE 1. First Order Thermal Model 

The qualitative analysis of this model states that heat produced by the heat source is transferred to the motor, 
which in turn dissipates the heat to the surrounding environment. 

The quantitative analysis is defined by a first order linear differential equation, similar to a parallel resistor-
capacitor (RC) electrical circuit: 

 2
th

th

dU UI r C •
dt R

= +     (W) (1) 

where: 

2

th

th

I r total heat flow (W)
dUC • heat flow into motor (W)
dt

U heat flow into surroundings (W)
R

=

=

=

 

Motors comprise two major electrical components, stator and rotor. The stator produces a rotating magnetic field 
(at line frequency) in the air gap, inducing voltage in the rotor bars. This induced voltage produces current flow in 
the rotor bars. Rotor current produces a magnetic field of its own. The rotor magnetic field is at 90 degrees to the 
air-gap magnetic field, thus generating torque tangential to the rotor surface, resulting in rotational force, thus 
turning the shaft. 

Because the construction of the stator and rotor is dissimilar, so are their thermal characteristics. To 
accommodate the difference in stator and rotor thermal properties, two separate thermal models are used to achieve 
greater accuracy: 

1) Rotor model 

a. Starting element – protects the rotor during the starting sequence. 

b. Running element – protects the rotor when the motor is up to speed and running. 

2) Stator model – protects the stator during starting and running. 

Transition from one rotor element to the other occurs at 2.5 times the rated full-load current of the motor.  
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APPLYING FIRST ORDER THERMAL MODEL TO MOTOR STARTING 

Starting an ac motor is considered an adiabatic (lossless) process. 

Starting deposits a large amount of heat (magnitudes greater than rated heating) in the rotor bars. Also, the 
duration of the starting sequence is magnitudes shorter than motor thermal time constants. Thus, it is regarded that 
any heat deposited in the rotor will not dissipate to the surroundings during the starting sequence. It will dissipate 
later when the motor is up to speed and running, and air flows in the air gap. 

Applying this assumption to the first order thermal model depicted in FIGURE 1, we are effectively stating that 
the thermal resistance of the rotor during starting is infinity (R = ∞). Substituting this condition into (1) yields: 

 2
th th

dU U dUI • r C • C •
dt dt

= + =
∞

    (W) (2) 

Rearranging (2): 

 
2

th

I • rdU • dt
C

=     (°C) 

The thermal capacity of a motor is a physical attribute and does not change. Motor resistance is assumed to be 
constant at this point. Convert the above expression to per-unit (pu) quantity by substituting the following: 

thr C 1 pu= =  

Thus: 

2dU I • dt=  

Integrating the expression: 

2 2dU I • dt I dt= =∫ ∫ ∫  

The solution to this general integral is: 

 2U I • t=     (pu °C) (3) 

Motor manufacturers supply thermal limit information as part of motor data. 

The starting thermal limit is expressed in terms of the maximum time (motor safe stall time) that corresponding 
locked-rotor current can be applied to a motor. Applying this to (3): 

LRAI I=  (pu locked rotor, amperes) 

STALLt T=  (safe stall time, seconds) 

 2
trip LRA STALLU I • T=     (pu °C) (4) 
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Incorporating the above into FIGURE 1 results in a rotor I2t starting element in FIGURE 2. 
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FIGURE 2. Rotor I2t Starting Element 

Plotting the pu temperature response of this model versus the line current of the motor, the response curve is a 
straight line, as illustrated in FIGURE 3. 
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FIGURE 3. Rotor I2t Starting Element Response Curve 

This model keeps the rotor resistance constant at RM, which occurs at standstill (S = 1.0) and is considered 1 pu.  

HIGH-INERTIA STARTING 

The rotor I2t starting element performs well except for high-inertia starts. A high-inertia start is when the time to 
accelerate a motor to rated speed is equal to or longer than its specified safe stall time. 

When trying to use the I2t starting element in high-inertia cases, the starting thermal limit of 2
LRA STALLI • T  is 

reached before the current drops below 2.5 • FLA, resulting in premature tripping of the motor, as shown in 
FIGURE 3. This would occur during every start. In other words, the motor cannot be started successfully. The 
solution is to use a speed switch. 

The reluctance of many customers to use speed switches led to the development of a rotor starting element that 
dispenses with the use of a speed switch in a motor starting logic scheme, while providing reliable and accurate 
protection during this critical state.  
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INDUCTION MACHINE EQUIVALENT CIRCUIT 

At the dawn of the twentieth century, an engineer and inventor named Charles Steinmetz created an equivalent 
circuit for induction machines. It is still the only equivalent circuit used today and is shown in FIGURE 4. 

( )r
1– S R S

S

 
FIGURE 4. Induction Machine Equivalent Circuit 

A closer look at the circuit reveals several interesting observations that might not be obvious at first glance: 

• The stator and magnetizing branches are always connected across the supply voltage; thus they are 
exposed to line frequency at all times. The numerical value of stator impedance is fixed. 

• The rotor branch is not connected to the line voltage. Instead, it is exposed to the voltage induced by 
the air-gap magnetic field. This voltage frequency depends on how quickly rotor bars cut the magnetic 
field. The numerical value of rotor impedance varies with the induced voltage frequency. This 
frequency is the difference between the electrical frequency of the line voltage and the mechanical 
rotational speed of the rotor/shaft assembly. The difference is called slip, S. 

• Rotor impedance is slip dependent. 

• Magnetic flux (thus current) distribution in the rotor bar varies with rotor speed. 

• At standstill, because of the intense air-gap magnetic field (function of the starting current), only a 
small portion of the rotor bar cross section conducts rotor current (FIGURE 5). 

• At rated speed, most of the rotor bar cross section is used (FIGURE 5). This fact influences apparent 
rotor resistance, Rr. 

• Rotor resistance at standstill is substantially larger than at rated speed. 

• Rr is speed dependent, Rr(S). This particular phenomenon is the key ingredient that makes the slip-
dependent thermal model possible. 

Rated Slip = S
Deep Bar Effect

Starting Slip = 1
Skin Effect

Rr Changes With Rotor Speed
 

FIGURE 5. Rotor Bars Current Distribution 
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CALCULATING MOTOR SLIP 

Let us calculate the input impedance of the induction machine equivalent circuit. After calculating and separating 
it into its real and imaginary components, the real part represents the input resistance of an induction machine. 

Motor input resistance, R, is: 

 r
S

R (S)R R
A •S

= +     (pu Ω) (5) 

where: 

RS = stator resistance 

Rr(S) = rotor resistance 

S = motor slip 

A = 1.2 (empirical constant) 

Reference [1] shows the detailed derivation of R. It also derives the expression for Rr(S) in terms of maximum 
rotor resistance, RM, which occurs at standstill (S = 1), and normal rotor resistance, RN, which occurs at rated motor 
speed (S = rated).  

The expression is: 

 r M N NR (S) (R R ) •S R= − +     (pu Ω) (6) 

Substituting (6) into (5) and solving for S yields: 

 N

S M N

R
S

A • (R R ) (R R )
=

− − −
 (7) 

Two quantities are required by the slip-dependent thermal model in order to calculate fixed parameters RS, RM, 
and RN: 

FLS = full-load slip 

LRQ = locked-rotor torque (at S = 1) 

When FLS and LRQ are entered as set points, the algorithm automatically calculates RM and RN and stores them 
in nonvolatile memory. 

The moment the motor is energized, the relay takes the first snapshot of motor input impedance, Z; extracts the 
real component, R; and calculates stator resistance, RS. 

The equations for RM, RN, and RS are: 

 M 2
LRQR
LRA

=     (pu Ω) (8) 

 RATED
N 2 2

FLA

Q •S 1• FLSR FLS
I 1

= = =     (pu Ω) (9) 

 M
S M

RR R R 0.833• R
1.2 •1

= − = −     (pu Ω) (10) 
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Now, slip is solely a function of motor input resistance. Motor input resistance is measured and updated every 
four milliseconds. Slip is calculated every two line frequency cycles. 

A case study using 2,250 HP induction motor data illustrates the relationship between motor input resistance, 
motor slip, and rotor resistance. 

FIGURES 6, 7, and 8 clearly illustrate the close dependence of rotor resistance on motor slip that, in turn, is 
extracted from motor input resistance. 
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FIGURE 6. Motor Input Resistance During Starting 
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FIGURE 7. Motor Slip During Starting 
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FIGURE 8. Rotor Resistance During Starting 

MODIFYING THE STARTING ELEMENT 

The final step in establishing the slip-dependent thermal model is incorporating the slip-dependent rotor 
resistance into the heat source of the thermal model shown in FIGURE 2. 

As mentioned before, the standard starting thermal element assumes a constant rotor resistance of 1 pu across the 
entire speed range from standstill (S = 1) to rated speed at rated shaft output (S = FLS). That value is RM. 

Let us express the slip-dependent resistance value, Rr(S), in terms of its maximum value, RM, and substitute it 
into the heat source equation: 

 2 2 r

M

R (S)
W I • r I •

R
= =     (pu W) (11) 

Breaking (11) down into positive- and negative-sequence components accommodates motor heating due to 
balanced current (positive sequence) and any current unbalance (negative sequence) that might be present.  

 2 2r1 r2
TOTAL 1 2

M M

R (S) R (S)
W I • I •

R R
= +     (pu W) (12) 

Replacing the heat source of FIGURE 2 with (12) gives rise to the slip-dependent thermal model shown in 
FIGURE 9 [2]. 

2
LRA STALLI • T

( ) ( )⎛ ⎞
+⎜ ⎟⎜ ⎟
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FIGURE 9. Slip-Dependent Starting Element 
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The response curve for this modified starting element is shown in FIGURE 10. 
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FIGURE 10. Slip-Dependent Starting Element Response Curve 

Comparison of the standard starting element response curve to the slip-dependent starting element response curve 
is shown in FIGURE 11. It clearly shows that because of the decreasing rotor resistance as a motor accelerates, rotor 
temperature is not a linear relationship, resulting in the ability to facilitate high-inertia starts without premature 
motor trips. 
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FIGURE 11. Comparison of Starting Element Response Curves 

ROTOR RUNNING ELEMENT 

When motor current drops below 2.5 • FLA, the rotor model switches from the rotor starting element to the rotor 
running element. At this point, the rotor starts its cooling process. The element resorts to the thermal RC circuit 
shown in FIGURE 1. The parameters of the circuit are based on the rotor locked-rotor current and safe stall time and 
cannot be modified by the user. They are: 

2
trip LRA HOT

th
2

th LRA HOT

U 1.2 • I • T

C 3.0

R 0.2 • I • T

=

=

=
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The circuit is illustrated in FIGURE 12. 
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FIGURE 12. Rotor Running Element 

The following facts can be observed at this time: 

• When the rotor temperature stabilizes, the rotor thermal capacity is 20.167 • I  pu. 

• The rotor cooling (and heating) thermal time constant is 2
LRA HOT0.6 • I • T  s. 

STATOR PROTECTION 

Equation (1) and FIGURE 1 apply to the stator thermal model for both starting and running motor states. 

To see the response of the model to current flow, let us solve (1) by rearranging the terms: 

 2
th th th

dUI • r • R C • R • U
dt

= +     (°C) (13) 

The above equation is further simplified by converting it to a pu quantity. The base quantities are: 

Full-load current = IFLA 

Temperature at rated current = 2
FLA thI • r • R  

Convert (13) to a pu quantity: 

 
2

2th
th th2

FLA th

I • r • R dUI C • R • U
dtI • r • R

= = +     (pu °C) (14) 

As in any RC circuit, the product of Cth and Rth represents the motor thermal time constant τ: 

 2 dUI • U
dt

= τ +     (pu °C) (15) 

It is important to note that the quantity I2 represents pu temperature. In other words, pu temperature is 
proportional to the square of the pu current. 
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Equation (15) is a first order linear differential equation whose solution is: 

 
t t

2 2
0U(t) I • e I • (1 e )

− −
τ τ= + −     (pu °C) (16) 

where: 

U(t) = pu temperature as a function of time 

I0 = pu initial current 

I = pu final current 

τ = motor thermal running time constant 

Another useful presentation of (16) to motor relay engineers is the time in which the thermal model will reach 
temperature.  

Rewriting (16) yields: 

 
2 2

0
2

I I
t • ln

I U(t)

⎡ ⎤−
= τ ⎢ ⎥

−⎢ ⎥⎣ ⎦
    (s) (17) 

In plain language, (17) states that the time it takes to reach temperature is a function of the initial motor current, 
the final motor current, and the thermal running time constant. 

Two important reminders are: 

• The base for this pu system is motor full-load current, FLA. 

• A valid range for pu temperature, U(t), is anywhere between initial pu temperature, 2
0I , and final pu 

temperature, I2. 

Let us further simplify (17) to make it more suitable for motor protection applications. Manufacturers state the 
machine’s service factor, SF, on every motor nameplate. Even though the exact interpretation of the SF varies, one 
thing is certain—any motor current greater than SF • FLA is considered a running overload condition. Translate this 
into a maximum pu temperature that the motor is designed for and can sustain at any time: 

 2
FLAU(t) (SF• I )=     (pu °C) (18) 

Because IFLA = 1 pu, the above expression is further simplified to: 

 2U(t) SF=     (pu °C) (19) 

Substituting (19) into (17) results in the final equation of the first order thermal model: 

 
2 2

0
2 2

I I
t • ln

I SF

⎡ ⎤−
= τ ⎢ ⎥

−⎢ ⎥⎣ ⎦
    (s) (20) 
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FIGURE 13 illustrates the stator model. 
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FIGURE 13. Stator Model 

A closer examination of (20) reveals that in order for time to be a rational number, the overload current, I, has to 
be greater than SF • IFLA. The question then is: what happens in a case where I is less than SF • IFLA? This situation 
does not constitute an overload condition but rather reflects the element’s response to a load change. 

Let us revisit (17). Because the denominator has to be greater than zero to maintain a rational number, postulate 
(using the three time constants rule, which states that it takes three time constants for a quantity to exponentially 
decay to less than 5 percent of its original) that once the pu temperature, U(t), reaches within 5 percent (0.05 pu) of 
the final pu temperature, I2 (increasing or decreasing), the equation is satisfied. 

 2I U(t) 0.05− =     (pu °C) (21) 

Substituting (21) into (17) and again accounting for increasing or decreasing loads, t is the time it will take the 
motor temperature to change from 2

0I  to I2: 

 ( )
2 2

0 2 2
0

I I
t • ln • ln 20 • I I

0.05

⎡ ⎤−
⎢ ⎥= τ = τ −
⎢ ⎥
⎣ ⎦

    (s) (22) 

MOTOR STOPPED STATE 

When a motor is de-energized, it does not require protection per se; however, it does need to be locked out and 
not allowed to re-energize until it cools down sufficiently to offer further service. 

When current ceases to flow in the thermal circuit shown in FIGURE 1, the circuit reconfigures, as illustrated in 
FIGURE 14. 

 

FIGURE 14. Motor Stopped State 

The lockout state has the logic value of one only when U > URESET. Otherwise, it is zero. 
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The lockout time can be calculated by substituting the following values into (17): 

 

2

2
0

RESET

I 0

I %TC
U(t) %TC

COOLTIME
3

=

=

=

τ =

  

Which leads us to lockout time, TLOCKOUT: 

 LOCKOUT
RESET

COOLTIME %TCT • ln
3 %TC

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
    (s) (23) 

This equation applies to the rotor and stator models. 

THERMAL MODEL RESPONSE CURVES 

The above presentation of the first order thermal model provides the mathematical derivations to substantiate 
equations that constitute the dual first order thermal model. Just as important and probably more practical is the 
graphical representation of the dual first order thermal model. This set of curves and the motor manufacturer’s 
thermal limit curves can be plotted together on a single graph to ensure that the model’s settings do indeed protect 
the motor to the motor manufacturer’s design specifications. 

FIGURE 15 is a typical set of curves describing the response of the dual first order thermal model. The slip-
dependent element of the rotor model is not shown because it is a dynamic algorithm fed by the actual measured 
input impedance of the motor (used to calculate rotor slip and resistance). 

 

FIGURE 15. First Order Model Response Curves 
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CONCLUSION 

Using the dual first order thermal model offers an accurate, thermodynamically based method of tracking pu 
temperature of an ac motor. Starting or running, the dual first order thermal model provides a superior replica of 
motor pu temperature generated by motor current flow, ensuring that motor manufacturer’s specifications are not 
exceeded, thus preserving the integrity and design life of the machine. 
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