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Abstract—The thermal model providing motor overload 
protection is derived from the first order differential equation 
for heat rise due to current in a conductor. Only the stator 
thermal time constant and the service factor are the required 
settings. The thermal model utilizes the full thermal capacity of 
the motor and allows current swings and cyclic overloads that 
would trip conventional overcurrent protection but do not 
actually overheat the motor. Four examples of thermal limit 
curves and their equations are used to discuss the varying 
plotting practices in use. The paper also includes a method to 
calculate the stator thermal time constant using two points read 
from the overload curve when not available from motor data. 

 
Index Terms—Cyclic overload, inverse overcurrent curve, 

motor thermal model, service factor, thermal limit curve, time 
constant 

I.   INSTRUCTION 
This paper explains the use of thermal limit curves for 

motor thermal protection as distinguished from the use of 
overcurrent characteristics for overcurrent protection. Fig. 1 
shows the running overload curve of a 2027 hp, 6600 V PA 
fan motor. 

The curve in Fig. 1 resembles an inverse overcurrent relay 
as defined in IEEE C37.112 Standard Inverse-Time 
Characteristic Equations for Overcurrent Relays with the 
equation: 
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where: 
I is current. 
IP is the pickup current. 
A is a constant. 
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Fig. 1. 2027 hp, 6600 V Motor Running Thermal Limit Curve 

To maintain coordination with overcurrent relays even with 
varying current, the dynamics would be implemented 
according to the integral equation: 
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In Fig. 2, the inverse characteristic with the constant 
A = 190 superimposed on the running overload curve is an 
almost exact fit. It shows that a long-time inverse-time 
overcurrent relay applied with minimal coordination margin 
can provide conservative overcurrent protection for motor 
overload. 
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Fig. 2. Running Overload With Superimposed Overcurrent Curve 

II.   THE THERMAL LIMIT CURVE 
However, the running overload curve of Fig. 1, rather than 

an overcurrent curve, is a thermal limit and has the equation: 
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where: 
t is the time to reach the limiting temperature. 
TC is the stator thermal time constant. 
I is the current in per unit of rated full load. 
I0 is the preload current. 
SF is the service factor (maximum continuous current). 

In this case, the thermal time constant is 3720 seconds, the 
service factor is 1.15, and the preload I0 is 1.12. The curve is 
derived from the first order thermal model for heating due to 

current in a conductor, as derived in the annex. It is the locus 
of time-current points that produce the limiting temperature 
caused by the rated maximum continuous current SF. In this 
equation, t is the time to reach the limiting temperature, 
starting from the preload temperature. 

Consequently, where the overcurrent curve is fixed, the 
thermal limit curve shows only one of many possible curves, 
depending on the preload current for which it is plotted. Fig. 3 
shows the curves for a range of preload values. 

 

Fig. 3. Thermal Limit Curve for a Range of Preload Current 

The stator thermal model is easily implemented in a 
microprocessor motor relay as: 

 2
n n –1

t tU I • 1– • UΔ Δ⎛ ⎞= + ⎜ ⎟τ τ⎝ ⎠
 (4) 

where: 
Un is temperature in units I2 at current sample n. 
∆t is the sample time increment. 
τ is the time constant. 
Un–1 is the temperature at the previous sample. 

Equation (4) calculates the temperature in units of I2. The 
plot in Fig. 4 shows 1.15 per-unit current applied for 
167 minutes and then stepped down to 1.0 per-unit current. 
The temperature rises exponentially from an initial 
temperature of one per unit and then decays back to the 
original temperature. For overload protection, the thermal 
model settings are simply the thermal time constant 
(3720 seconds) and the service factor (1.15). 
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Fig. 4. Stator Temperature Responding to a Step of Current 

The thermal model has the advantage of using the full 
thermal capacity of the motor, allowing transient current 
swings and cyclic overloads that would trip the overcurrent 
relay but do not actually overheat the motor. Fig. 5 shows the 
temperature response U of the thermal model to an overload 
alternating between 1.4 and 0.5 per-unit current every 
12 minutes. Fig. 6 shows that the overcurrent relay trips in 
6.57 minutes for the cyclic overload that does not overheat 
the motor. 
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Fig. 5. Thermal Model Response to a Cyclic Overload 

 

Fig. 6. Overcurrent Relay Tripping for the Cyclic Overload 

III.   OVERLOAD CURVE EXAMPLES 
Four examples of stator thermal limit curves from three 

different manufacturers are shown in the following figures. 
The equations for each curve are included, and the time 
constant in each case was obtained from motor data. These 
examples show two different plotting practices. 

The service factor is the asymptote of the curve in Fig. 7 
and Fig. 8. However, the curve of Fig. 9 has a much higher 
asymptote at 1.65 per unit. It shows the overload for the 
highest current at which the motor can run without stalling 
and is not an indication of constant overload capability. The 
asymptote in Fig. 10 also exceeds the service factor. 
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Fig. 7. Thermal Limit Curve for a WEG 20421 hp ID Fan Motor 
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Fig. 8. Thermal Limit Curve for a WEG 2027 hp PA Fan Motor 
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Fig. 9. Thermal Limit Curve for a TECO 1150 hp Motor 
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Fig. 10. Thermal Limit Curve for a Siemens 2250 hp Motor 

This type of overload plot appears in IEEE 620 Guide for 
the Presentation of Thermal Limit Curves for Squirrel Cage 
Induction Machines. However, the protection settings remain 
the time constant and service factor, the maximum rated 
continuous current. 

IV.   CALCULATING THE TIME CONSTANT 
When the data are not available, the time constant can be 

calculated using two points read from the thermal limit curve. 
Only one value of the preload current I0 will give the same 
time constant TC in the following pair of equations: 
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(I1, t1) = (1.5, 263.6) and (I2, t2) = (2.5, 51.06) are the 
coordinates of the points read from the curve of Fig. 1. 
Inserting these values in (5) and (6) with SF = 1.15 yields 
TC = 3720 for I0 = 1.12. The specific preload I0 occurs where 
the ratio of TC1 to TC2 is 1.0 in the plot of the ratio as a 
function of I0, as shown in Fig. 11. 
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Therefore, the equation of the curve in Fig. 1 is: 
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Fig. 11. The Ratio of TC1 to TC2 as a Function of Values of Preload I0 

V.   CONCLUSION 
1. Motor overload curves are derived from the first order 

thermal model for heating due to current in a 
conductor. It is the locus of time-current points that 
produce the limiting temperature.  

2. Overload protection is provided in the form of a first 
order thermal model, where the time constant and the 
service factor (SF) are settings. 

3. A long-time inverse-time overcurrent relay provides 
conservative overload protection. However, thermal 
protection provides full use of motor thermal 
capacity, allowing transient current and cyclic 
overloads that would trip the overcurrent relay but do 
not overheat the motor. 

4. When the time constant is unavailable, it can be 
calculated using two points read from the thermal 
limit curve. 

VI.   ANNEX – FIRST ORDER THERMAL MODEL 
The first order thermal model is derived as follows: 

 w A–θ = θ θ  (8) 

where: 
θW is the winding temperature. 
θA is the ambient temperature. 

The rate of increase of the temperature is given by the 
equation expressing the thermal equilibrium. 

 W
s s

d dPower Supplied – Losses C m C m
dt dt
θ θ

= =  (9) 

In this equation, Cs is the specific heat of the winding and 
m is the mass. The specific heat is the amount of energy 
needed to raise one kilogram of that material one degree 
centigrade. The losses or the quantity of heat transferred to 
the surrounding environment is expressed as: 

 W A–
Losses

R R
θ θ θ

= =  (10) 

where: 
R is the thermal resistance in °C/watt. 

Equation (9) can be otherwise expressed as: 
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The mass m multiplied by the specific heat Cs is known as 
C, the thermal capacity of the system with units of joules/°C. 
It represents the amount of energy in joules required to raise 
the system temperature by one degree centigrade. The product 
of the thermal resistance R and the thermal capacitance C has 
units of seconds and represents the thermal time constant: 
 sR • m • Cτ =  (13) 



 

 

The fundamental equation (12) can be expressed in a 
simpler form: 

 2
s

1 dI C m • R • •
r • R dt r • R

θ θ⎛ ⎞= +⎜ ⎟
⎝ ⎠

 (14) 

 sC m • Rτ =  (15) 

let 
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θ
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and 
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Therefore, the first order thermal model equation becomes 
the simple form: 
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The solution of the first order equation is: 

 
– t

2U I • 1– e τ
⎛ ⎞

= ⎜ ⎟⎜ ⎟
⎝ ⎠

 (19) 

With an initial value U0: 
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Solving the equation for t gives the time to reach a specific 
temperature in units of I2: 
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Since the temperature is in units of I2, U and U0 can be 
expressed as values of current squared: 
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When using (20) to calculate U over a small time 
increment Δt, the exponentials can be replaced with the first 
two terms of the infinite series as follows: 
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Substituting (23) in (20) gives: 
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This incremental form of the equation is ideal for use in the 
processor for the continuous real-time calculation of 
temperature: 
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where: 
Un is the temperature expressed in units of I2 at sample n. 
Un–1 is the temperature expressed in units of I2 at the 
previous sample. 

Electrical engineers find it helpful to visualize the thermal 
model as an electrical analog circuit. The first order equation 
of the thermal model has the same form as the equation 
expressing the voltage rise in an electrical RC circuit, as 
shown in Fig. 12. 
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Fig. 12. The Electrical Analog Circuit of the Thermal Model 

In Fig. 12, the lowercase letters are used to identify the 
electrical parameters. In the circuit, the voltage V is the 
analog of the temperature U; the constant current i is 
numerically equal to the current squared. The thermal 
resistance R and thermal capacitance C are the direct analogs 
of the electrical resistance r and the electrical capacitance c. 
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