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Abstract—Unlike remote terminal unit (RTU) installations in 
the past, which were largely used to report I/O values and 
transmit supervisory control and data acquisition (SCADA) 
controls, present day substation automation networks 
additionally coordinate high-speed load management, intelligent 
electronic device (IED) integration, and user security. Substation 
operators are faced with many technology choices in an effort to 
balance ease of integration and system performance. 

This paper discusses the application of an Ethernet-based 
fieldbus technology, initially developed for industrial control 
systems, to substation automation networks. EtherCAT is an 
open fieldbus standard that combines the flexibility of Ethernet 
connectivity with real-time deterministic performance and a 
highly efficient messaging structure. In the substation 
environment, EtherCAT can be used in a variety of network 
topologies to improve the performance and reliability of the 
power system. 

This paper provides a brief tutorial on the functionality of 
EtherCAT messaging and communications network topologies. 
Additionally, EtherCAT data acquisition and control 
performance are compared to other contemporary Ethernet and 
serial messaging technologies in typical electric utility substation 
applications. 

I.  INTRODUCTION 
To accommodate new, increasingly popular intelligent 

electronic device (IED) network functions, substation 
communications infrastructure is experiencing a dramatic 
change and is migrating to Ethernet. The majority of 
successful substation integration systems that are going into 
service today and in the near future are based on non-Ethernet 
local-area networks (LANs), built using EIA-232 point-to-
point and EIA-485 multidrop communications ports within the 
IEDs. The information exchanges are carried out using 
register- and/or address-based protocols, such as DNP3, 
IEC 60870, and Modbus®. These communications methods 
also include National Institute of Standards and Technology-
approved protocol standards created by a standards-related 
organization (SRO) and offered via a “reasonable and 
nondiscriminatory” license. This includes MIRRORED BITS® 
communications, additional open vendor-developed serial 
protocols, and other standards, such as IEEE C37.94. With the 
new IEC 61850 standard and the popularity of Ethernet 
networks, the entire picture of substation communication is 
changing.  

In this paper, we illustrate the similarities and differences 
of MIRRORED BITS communications and IEC 61850 Generic 
Object-Oriented Substation Event (GOOSE) messages in 
order to explain the functionality of the latter. Then we 
compare and contrast shared Ethernet bandwidth techniques 

using IEC 61850 GOOSE with dedicated nonshared Ethernet 
bandwidth techniques using EtherCAT to show the 
improvements of time-deterministic communications. 

II.  CONTEMPORARY SUBSTATION ETHERNET RELIES ON  
IEEE 802.1 AND ISO/IEC 15802-1 

Prior to switched Ethernet technology, early networks were 
built using Ethernet hub networks based on IEEE 802.3 
Carrier Sense Multiple Access/Collision Detection 
(CSMA/CD), where messages competed for bandwidth in 
collision domains [1]. With the use of twisted pairs and fiber 
cables that separate the transmitted and received traffic, 
modern switched Ethernet LANs create a truly full-duplex and 
collision-free communications environment. IEC 61850 
migrated to IEEE 802.1 and ISO/IEC 15802-1 in order to 
change from the network behavior associated with 
IEEE 802.3 CSMA/CD and collision domain network 
segments. ISO/IEC 15802-1 defines the Media Access Control 
(MAC) Service used in modern Ethernet navigation [2]. 
The MAC Service provides transparent transfer of data 
between MAC Service users by directing messages from one 
port to another on the network until the message reaches its 
final destination. The 48-bit hardware MAC (hMAC) address 
is divided into two parts. The first 24 bits correspond to the 
organizationally unique identifier (OUI), as assigned by the 
IEEE Standards Board. The second 24 bits of the address are 
administered locally by the assignee to provide uniqueness.  

After an initial and nondeterministic network configuration 
process, Ethernet switches learn and archive a list of the MAC 
addresses of each device to which they direct traffic. When 
receiving a message from a port, the switch examines the 
destination MAC address of the message and forwards it only 
to the port configured to redirect messages that match the 
MAC address. This method works for client/server Internet 
Protocol (IP) traffic, such as supervisory control and data 
acquisition (SCADA) poll and response using Manufacturing 
Message Specification (MMS), Modbus TCP/IP, or DNP3 
LAN/WAN; however, it does not work for IEC 61850 
GOOSE.  

The original MIRRORED BITS communications messages 
exchanged Boolean information over physically segregated 
point-to-point communications channels. In 2000, Utility 
Communications Architecture (UCA2) members saw the 
value of this peer-to-peer virtual wiring method and created 
multicast Boolean exchange over Ethernet, called UCA2 
GOOSE. IEDs were capable of reliable generation and 
consumption of UCA2 GOOSE messages; however, the 
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inefficiency of navigating IEEE 802.3 CSMA/CD collision 
domain Ethernet networks made the use of UCA2 GOOSE 
unreliable.  

Shortly after the MIRRORED BITS communications message 
was modified to convey Boolean, analog, and engineering 
access textual information, UCA2 GOOSE was similarly 
modified. During this time, UCA2 was merged into the 
IEC 61850 communications standard, and UCA2 GOOSE was 
renamed IEC 61850 General Substation State Event (GSSE). 
A new message was designed to transfer both Boolean and 
analog data types, but not engineering access text. This new 
message, IEC 61850 GOOSE, was also changed to use the 
ISO/IEC 15802-1 MAC Service. As such, IEC 61850 behaves 
in a multicast mode without knowledge of the destination 
hMAC addresses and uses multicast MAC, or virtual MAC 
(vMAC), instead. Therefore, IEC 61850 GOOSE messages 
are published to a group destination multicast vMAC address, 
which goes to every port.  

An Ethernet switch processes every message received or 
transmitted by each port. It takes time for switches to process 
messages, and this introduces a short, but unavoidable, switch 
processing latency delay. If a switch cannot process and 
forward all of the messages that it receives, a backlog occurs. 
A message waits in a transmitting memory queue for its turn 
to be sent. If this occurs, there is a switch queue latency in 
addition to the switch processing latency. A message may 
need to go through several switches in a network to reach its 
destination. When networks are designed with knowledge and 
care, the likelihood of a switch queue delay is minimized, but 
not eliminated.  

An Ethernet switch stores and forwards messages as they 
are received over Ethernet cables, similar to the behavior of a 
MIRRORED BITS communications switch using serial cables. 
Layer 2 GOOSE messages have a multicast address, not a 
destination address, and therefore cannot be managed via 
mechanisms for MMS, DNP3 LAN/WAN, Telnet, File 
Transfer Protocol (FTP), and other IP messages using Layer 3 
and above. Multicast (one-to-many) means that each time a 
GOOSE message is received on a port, it is automatically sent 
to every other port. Even though GOOSE no longer requires 
collision detection and mitigation among Ethernet messages 
within a collision domain, the use of shared Ethernet 
bandwidth provisioning prohibits deterministic, synchronous 
GOOSE message exchange. 

III.  ETHERNET TRAFFIC NAVIGATION TECHNIQUES TO 
COMPENSATE FOR SHARED BANDWIDTH BEHAVIOR 

One of the techniques to alleviate the network burden of 
multicast/broadcast messages is the virtual local-area network 
(VLAN). IEEE extended the Ethernet Standard 802.1 with the 
designator Q for message quality, which includes extensions 
for optional VLANs via a previously unused field in the 
Ethernet header tag that becomes a VLAN identifier (VID). 
IEEE 802.1Q VLAN, or QVLAN, divides a physically 
connected network into several VLANs. While keeping the 
sensitive information private, QVLAN techniques can restrict 

traffic flow of multicast and/or broadcast messages to a single 
QVLAN and therefore the devices within it. 

IEC 61850 adopted the use of the IEEE 802.1Q VID as a 
QVLAN tag to identify multicast messages and overcome the 
inability to perform network routing by performing manual 
routing. Because of the unwanted and unstoppable automatic 
distribution of multicast messages, the manual routing acts in 
reverse. The multicast messages are routed everywhere but are 
only allowed to pass through ports from which they have not 
been blocked. In IEC 61850 networks, QVLAN tags are 
implemented within the multicast message by the publishing 
IED and used by switches for manual routing. This is one of 
several network processing tasks that have been forced into 
the IEDs to compensate for inadequate data flow capabilities 
in Ethernet networks. Switches unable to perform QVLAN 
filtering, or those configured incorrectly, will not work 
properly and may block even wanted GOOSE transfer. Best 
engineering practice methods within IEC 61850 dictate a 
unique QVLAN identifier for each GOOSE message 
publication. 

The only effective method to segregate Ethernet multicast 
traffic and make GOOSE message navigation behave as 
deterministically as possible is to follow these simple rules: 

• Assign each GOOSE message a unique QVLAN. 
• Assign each GOOSE message a unique vMAC. 
• Assign each GOOSE message a unique application 

identifier (app ID). 
• Assign the last octet of the vMAC, app ID, and 

QVLAN the same value. 
• Allow no multicast messages on the network without 

QVLAN tags. 
• Disable all unused switch ports. 
• Configure each switch port to use MAC filtering to 

block delivery of every multicast message to the 
connected IED, except the GOOSE that the IED has 
subscribed to within its Substation Configuration 
Language (SCL) file. 

• Configure each switch port to use QVLAN filtering to 
block delivery of every multicast message to the 
connected IED, except the GOOSE that the IED has 
subscribed to within its SCL file. 

IV.  ETHERCAT TECHNOLOGY ELIMINATES SHARED 
BANDWIDTH BEHAVIOR 

A.  EtherCAT Overview and Technology Introduction 

    1)  Level 0 Fieldbus in Process Control 
Concurrently with the development of Ethernet networks 

for substations, process control engineers have been 
considering Ethernet applications for industrial systems. Ever 
since the introduction of the programmable logic controller 
(PLC), users have looked for methods to more efficiently 
connect field I/O with controllers and construct larger 
distributed control networks. Many of the techniques used 
have been similar to substation networks. 
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    2)  S95 or Purdue Network Model 
The terminology commonly used to describe components 

of industrial networks differs from terms we use for substation 
networks. A few of these terms are helpful as part of this 
discussion. The S95 (or Purdue) model, as seen in Fig. 1, 
represents the hierarchy and nomenclature of networking 
systems within industrial manufacturing organizations [3]. 

 

Fig. 1. S95 network hierarchy model 

Level 0 and Level 1 networks are similar in many ways to 
the process bus and station bus concepts that we apply to 
substation networks, as shown in Fig. 2. Under the S95 model, 
current transformers (CTs), potential transformers (PTs), and 
temperature sensors are all considered Level 0 devices. 
Remote terminal units (RTUs) and protective relays are 
categorized as Level 1. 

 

Fig. 2. Relative comparison of S95 model to substation networks 

    3)  Evolution of Level 0 Networks 
More than thirty years ago, process control systems began 

transitioning from hard-wired relay logic and single-function 
loop controllers to PLC-based Level 1 systems [4]. The 
limited computing capability of early PLCs supported a 
relatively small number of field inputs and outputs. Because 
of that limitation, I/O wiring could be economically 
terminated within the same cabinet as the PLC. However, as 
automation vendors developed more advanced PLCs that 
accommodated many more field points—and a larger variety 
of signal types—users needed an alternative I/O networking 
method in order to avoid terminating hundreds or thousands of 
points directly in the controller cabinet. 

In response, equipment vendors developed I/O devices that 
could communicate with a PLC via a specialized network, or 
fieldbus. Fieldbus networks were based on EIA-232 or  

EIA-485 communications and provided a means for a 
controller to read and write large quantities of I/O points via a 
single communications cable. Early fieldbus implementations 
were based on proprietary network protocols; but in the 1990s, 
a number of standard protocols, such as FOUNDATION 
fieldbus, became popular in the industry. 

B.  Development of EtherCAT 
The serial networking used for fieldbuses in the 1990s 

became bandwidth limited as controllers with larger and larger 
processing capabilities were introduced into the market [5]. 
Use of Ethernet technology as a second generation fieldbus 
was a natural evolution, but the inherently nondeterministic 
nature of Ethernet created difficult new problems. 
Additionally, most Ethernet equipment was not designed for 
industrial use, which made the adoption of Ethernet-based 
fieldbuses even slower. 

A number of Ethernet protocol standards exist that operate 
under constraints intended to make them more deterministic. 
Some standards use messaging rules to eliminate collisions 
and reduce the signal jitter. Others take advantage of Ethernet 
switches that use VLANs in order to reduce network burden 
within a subnet to only messages sent from or meant for 
devices within that subnet. 

While these methods improve network determinism, they 
still do not make efficient use of the bandwidth. Most of these 
protocols adhere to an Ethernet paradigm that each device 
sends an entire Ethernet frame for each message and every 
message delivered to a device is composed of an entire 
Ethernet frame. Each frame can be as long as 1,518 bytes, 
even if the usable process information (either inputs or control 
outputs) only requires a few bytes. The result, even when 
using multicast messages, is that a large amount of the 
network traffic is consumed by administrative information. 

C.  EtherCAT Technology 
The developers of EtherCAT created solutions for both the 

time and efficiency challenges of Ethernet [6]. The 
fundamental difference between EtherCAT and other Ethernet 
fieldbus protocols is that a single EtherCAT frame contains 
I/O point updates from many devices in a network, not just a 
single device. Existing transport protocols could not 
accomplish this, so a new EtherType was defined explicitly 
for the EtherCAT protocol. As we will see, this approach 
provides complete compatibility with Ethernet standards. 

    1)  Development Objectives and Requirements 
Even though it is an open standard protocol today, 

EtherCAT began as the invention of Beckhoff Automation. 
The main development objectives were as follows: 

• Deterministic network operation. 
• Fast network update time. 
• Efficient use of network bandwidth. 
• Compatibility with existing controller Ethernet 

hardware. 
• Full conformity with the Ethernet standard. 
• Economical implementation for small and large I/O 

devices. 
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    2)  Definition of EtherType for EtherCAT Messages 
The EtherCAT frame (shown in Fig. 3) is specifically 

designed to incorporate process data from many Ethernet 
nodes into a single message. The telegram can extend to 
multiple frames, with a maximum size of 4 gigabytes. 
Individual devices in the network are configured to read and 
write data from specific regions of the telegram, which means 
that the telegram mapping sequence is not directly related to 
the physical network configuration. 

Ethernet Header ECAT EtherCAT Telegram Ethernet

Datagram 1 Datagram 2 Datagram n. . .Frame 
HeaderTypeSADA CRC

ECAT – EtherCAT
DA – Destination Address
SA – Source Address
CRC – Cyclic Redundancy Check  

Fig. 3. Standard Ethernet frame for EtherCAT messages 

As shown in Fig. 4, the independent data mapping allows 
designers to create telegrams based on specific process 
sequences or mapping preferences in the PLC or other Level 1 
controllers. 

 

Fig. 4. Network location independent from EtherCAT mapping 

    3)  How On-the-Fly Processing Works 
In order to achieve the needed network speed for critical 

applications, EtherCAT devices use a low-level, on-the-fly 
processing method where all devices within a network 
segment receive the entire EtherCAT message. The PLC, or 
EtherCAT master, begins the sequence by sending a message 
with updated output control data and input status from the 
previous data cycle.  

As the first I/O device in the network starts receiving the 
frame, it automatically reads the proper control data from the 
telegram and writes updated process data into the telegram. 
The first device also automatically forwards the updated 
telegram to the next I/O device with a delay of less than 
1 microsecond. Each subsequent device similarly reads and 
writes the needed portions of the telegram; then the last device 
returns the completed message to the PLC. Even in very large 
systems, the entire round trip can be completed in less than 
100 microseconds. 

The hardware interface for each device consists of standard 
Ethernet ports. However, each I/O device has a field-
programmable gate array (FPGA) or low-cost application-
specific integrated circuit (ASIC) that reads and writes the 
EtherCAT telegram such that the incredibly low signal delay 
is maintained. A fieldbus memory management unit (FMMU) 
process in the FPGA or ASIC is automatically configured 
upon network initialization with the location of relevant input 
and output locations in the EtherCAT telegram. Once the 
network enters normal operating mode and starts transmitting 
telegrams, no time is wasted evaluating the entire telegram. 
The FPGA or ASIC can quickly read and write just the needed 
memory locations and forward the telegram. After sending the 
telegram, the device internally acts on newly received control 
commands and updates inputs before the next telegram 
arrives. 

The PLC maintains overall control system determinism by 
starting each telegram transmission on a fixed schedule. Low 
processor jitter in modern control hardware enables a 
repeatable schedule. 

    4)  EtherCAT Works Over Switched Networks 
EtherCAT exhibits maximum performance on a dedicated 

network segment, as shown in the previous section, but the 
protocol specification also supports use on a multipurpose 
Ethernet network using User Datagram Protocol/Internet 
Protocol (UDP/IP) messages. As shown in Fig. 5, the 
EtherCAT telegram is simply encapsulated for the UDP 
application. While this use case illustrates the flexibility of 
EtherCAT, users need to understand that the EtherCAT update 
rate degrades over a switched network. The amount of 
degradation depends on the Ethernet switches in service and 
the overall network performance. 

 

Fig. 5. EtherCAT messaging via a switched network 

    5)  How Multiple Vendor Products Work on Network – 
Open Protocol 

The combination of a strong set of conformance tests and 
the standard hardware interface (via FPGA or ASIC) results 
not only in interoperable devices between many vendors but 
also in consistent device performance in an EtherCAT 
network. A Level 1 control device can be installed with digital 
I/O modules from one vendor, analog I/O from a second 
vendor, and motor drives from a third. As long as each device 
is EtherCAT compliant, the network operates properly. 
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V.  PERFORMANCE TESTING 
Two tests were conducted in order to compare the round 

trip performance of a standard switched Ethernet network and 
an EtherCAT network. Each test consisted of the following 
two parts: 

• Part 1 of the test was performed between two devices 
connected to the network to measure the time it would 
take to exchange I/O information.  

• In Part 2, additional devices were added to the 
network to determine how the communications 
between the two initial devices would be affected. 

A.  Test 1 – Switched Ethernet Network 
Two devices, A and B, were connected to an Ethernet 

switch, as shown in Fig. 6. Device B was constantly 
monitoring the status of a digital input on Device A, using 
IEC 61850 GOOSE messages. When the digital input 
asserted, Device B was notified and immediately sent a 
GOOSE message back to Device A in order to activate a 
digital output. 

GOOSE

Device A

Ethernet 
Switch

Device B

Pushbutton Lamp 
Indicator

 

Fig. 6. First test configuration 

The propagation time of the information from the assertion 
of the input to the activation of the output was measured using 
the 1-millisecond resolution Sequential Events Recorder 
(SER) in Device A. The time was calculated by subtracting 
the time stamp of the input from the time stamp of the 
assertion of the output. The input was generated several times 
in order to create multiple events. For each one of the events, 
the propagation time was 10 milliseconds.  

Then the network was modified. Four additional devices 
were connected to the switch, each of them exchanging input 
and output information with Device B. This means that there 
were five devices attempting to communicate with one single 
node (Device B), as can be seen in Fig. 7. 

 

Fig. 7. Additional devices added to the network to increase traffic to  
Device B 

Under these new conditions, the experiment was repeated. 
The digital input on Device A was activated several times to 
create multiple events in order to measure the message 
propagation time from Device A to Device B and back to 
Device A. This time, the result obtained was different from the 
first experiment. The values obtained from each event were 
different. In twenty activations of the input, the minimum 
propagation time registered was 10 milliseconds (same time as 
in the first experiment), the maximum propagation time was 
16 milliseconds, and the mean was 12 milliseconds. 

As we can see in this example, the response time changes 
when the network load is increased. The variability is due to 
each device on the network sending an independent Ethernet 
frame to Device B. 

B.  Test 2 – EtherCAT Network 
Next, we tested an EtherCAT network in a similar way. An 

IED (Device A) read the status of a digital input from a remote 
module (Device B) and activated a remote digital output when 
the input asserted. The architecture is shown in Fig. 8. 

  

Fig. 8. Device A reads input and writes output on Device B 

The propagation time of the EtherCAT frame was 
calculated using the time stamp of a 1-millisecond SER. As in 
the previous test, the digital input was activated several times 
in order to register multiple events. For this experiment, the 
minimum propagation time registered was 9.3 milliseconds 
and the maximum was 12.3 milliseconds.  

Then four more devices were added to the EtherCAT 
network to increase the amount of data sent to Device A. Each 
additional device sent digital input statuses to Device A, as 
shown in Fig. 9. 

 

Fig. 9. Four additional devices added to the EtherCAT network to increase 
information traffic to Device A 

Multiple events were triggered and logged in the SER. The 
results were identical to the original test system. The 
minimum time was 9.3 milliseconds, and the maximum was 
12.3 milliseconds. In other words, the additional signals in the 
network did not affect the propagation time of the data.  
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Some of the reasons that explain this result are as follows: 
• There is a single master on the network instead of 

multiple devices attempting to communicate 
independently with one single device. 

• Slave devices connected to the network do not read 
and process the complete Ethernet frame. Each slave 
extracts and inserts only the relevant data while the 
frame passes through it. 

• EtherCAT frame processing is done independently of 
the response time of any microcontroller. 

VI.  PROCESSING OF INPUT MESSAGES 
Frequently, in RTU applications, many digital inputs need 

to be processed to evaluate the state of substation equipment. 
As an evaluation of such an application, we compared the 
processing of GOOSE messages and EtherCAT telegrams in 
an RTU central processing unit (CPU). For each protocol, the 
CPU received 2,592 digital inputs.  

For the case of using GOOSE as the I/O network, if there 
are 48 I/O modules that each report 54 digital inputs, the CPU 
can subscribe to and receive all 48 GOOSE messages every  
10 milliseconds. Because each GOOSE message contains  
1,518 bytes, the CPU needs to evaluate 72,864 bytes of data. 

Using the same CPU to similarly receive the inputs via 
EtherCAT, we use 108 digital input modules. All of the 
modules reside on the same network segment, and the CPU 
can receive all inputs every 500 microseconds. Because all of 
the modules share EtherCAT messages, reducing overhead, 
the CPU evaluates only 4,500 bytes of data. 

VII.  BENEFITS OF ETHERCAT NETWORKS 
High-speed, distributed RTU, control, and protection 

schemes depend on deterministic network operation and fast 
processing. For example, utility implementations of 
distributed fast bus trip algorithms have been infrequent due to 
the expense and complexity of the equipment. EtherCAT 
networks provide a means to deploy an economical bus 
supervision and fast bus trip system. As shown in Fig. 10, the 
EtherCAT network monitors each feeder and disconnect 
switch for a sample substation bus. This topology allows the 
controller to quickly identify a fault that is cleared by a feeder 
relay or incoming transformer protection. The bus protection 
uses this information to delay tripping of the bus unless no 
monitoring unit identifies the fault. The bus relay can clear the 
entire bus quickly in case of an internal fault or breaker failure 
on a feeder. 

Controller
M

EtherCAT Monitoring Module=

EtherCAT 
Network

M M

MMMMMMMM

M  

Fig. 10. Bus network overview 

A.  Improved Network Availability 
EtherCAT natively includes diagnostics that can help 

improve control system operational security and availability. 
Each I/O module includes a watchdog triggered by valid 
EtherCAT messages. If the watchdog expires, the module 
declares a network error. I/O modules exist that use this error 
case to deassert all outputs in order to avoid unintended 
changes of state. Some vendors have I/O modules that include 
a further supervisory watchdog that monitors the FPGA or 
EtherCAT ASIC. The supervisory watchdog deasserts outputs 
in case of a module processing error. 

The network controller also monitors network-wide system 
health in the following two ways: 

• Each EtherCAT message includes a working counter 
value updated by each module in the network. If this 
counter returns to the controller with something other 
than the expected value, the controller immediately 
knows there is a network error. Users may determine 
how their system should respond to these network 
errors. 

• Each module can report status information as part of 
an EtherCAT message. The status includes tags 
concerning the health of the module hardware and the 
network. The combination of the working counter and 
module status allows users to quickly identify and 
diagnose I/O system issues. 

B.  No Performance Degradation for Multivendor Network 
The design of the EtherCAT message structure and 

network interface provides built-in interoperability when users 
install I/O modules from multiple vendors. Whether a given 
module has a very simple function and little data processing or 
includes complex algorithms via an independent processor, the 
network interface for EtherCAT is standard. Once a user 
configures the network membership and the network traffic 
commences, the I/O update time is consistent and measurable. 
Because every tag is updated during each message, the overall 
update rate does not vary depending on the dynamics of the 
system under control. 
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VIII.  CONCLUSION 
In this paper, we have shown how EtherCAT can be 

effectively used for real-time RTU and remote I/O 
applications. The design of EtherCAT provides the flexibility 
of Ethernet and operates deterministically. 
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