
Application of Ethernet Fieldbus to Substation
RTU and Automation Networks

David Dolezilek, Francisco Chumbiauca, and Michael Rourke
Schweitzer Engineering Laboratories, Inc.

Presented at the
13th Annual Western Power Delivery Automation Conference

Spokane, Washington
March 29–31, 2011

1

Application of Ethernet Fieldbus to
Substation RTU and Automation Networks

David Dolezilek, Francisco Chumbiauca, and Michael Rourke, Schweitzer Engineering Laboratories, Inc.

Abstract—Unlike remote terminal unit (RTU) installations in
the past, which were largely used to report I/O values and
transmit supervisory control and data acquisition (SCADA)
controls, present day substation automation networks
additionally coordinate high-speed load management, intelligent
electronic device (IED) integration, and user security. Substation
operators are faced with many technology choices in an effort to
balance ease of integration and system performance.

This paper discusses the application of an Ethernet-based
fieldbus technology, initially developed for industrial control
systems, to substation automation networks. EtherCAT is an
open fieldbus standard that combines the flexibility of Ethernet
connectivity with real-time deterministic performance and a
highly efficient messaging structure. In the substation
environment, EtherCAT can be used in a variety of network
topologies to improve the performance and reliability of the
power system.

This paper provides a brief tutorial on the functionality of
EtherCAT messaging and communications network topologies.
Additionally, EtherCAT data acquisition and control
performance are compared to other contemporary Ethernet and
serial messaging technologies in typical electric utility substation
applications.

I. INTRODUCTION
To accommodate new, increasingly popular intelligent

electronic device (IED) network functions, substation
communications infrastructure is experiencing a dramatic
change and is migrating to Ethernet. The majority of
successful substation integration systems that are going into
service today and in the near future are based on non-Ethernet
local-area networks (LANs), built using EIA-232 point-to-
point and EIA-485 multidrop communications ports within the
IEDs. The information exchanges are carried out using
register- and/or address-based protocols, such as DNP3,
IEC 60870, and Modbus®. These communications methods
also include National Institute of Standards and Technology-
approved protocol standards created by a standards-related
organization (SRO) and offered via a “reasonable and
nondiscriminatory” license. This includes MIRRORED BITS®
communications, additional open vendor-developed serial
protocols, and other standards, such as IEEE C37.94. With the
new IEC 61850 standard and the popularity of Ethernet
networks, the entire picture of substation communication is
changing.

In this paper, we illustrate the similarities and differences
of MIRRORED BITS communications and IEC 61850 Generic
Object-Oriented Substation Event (GOOSE) messages in
order to explain the functionality of the latter. Then we
compare and contrast shared Ethernet bandwidth techniques

using IEC 61850 GOOSE with dedicated nonshared Ethernet
bandwidth techniques using EtherCAT to show the
improvements of time-deterministic communications.

II. CONTEMPORARY SUBSTATION ETHERNET RELIES ON
IEEE 802.1 AND ISO/IEC 15802-1

Prior to switched Ethernet technology, early networks were
built using Ethernet hub networks based on IEEE 802.3
Carrier Sense Multiple Access/Collision Detection
(CSMA/CD), where messages competed for bandwidth in
collision domains [1]. With the use of twisted pairs and fiber
cables that separate the transmitted and received traffic,
modern switched Ethernet LANs create a truly full-duplex and
collision-free communications environment. IEC 61850
migrated to IEEE 802.1 and ISO/IEC 15802-1 in order to
change from the network behavior associated with
IEEE 802.3 CSMA/CD and collision domain network
segments. ISO/IEC 15802-1 defines the Media Access Control
(MAC) Service used in modern Ethernet navigation [2].
The MAC Service provides transparent transfer of data
between MAC Service users by directing messages from one
port to another on the network until the message reaches its
final destination. The 48-bit hardware MAC (hMAC) address
is divided into two parts. The first 24 bits correspond to the
organizationally unique identifier (OUI), as assigned by the
IEEE Standards Board. The second 24 bits of the address are
administered locally by the assignee to provide uniqueness.

After an initial and nondeterministic network configuration
process, Ethernet switches learn and archive a list of the MAC
addresses of each device to which they direct traffic. When
receiving a message from a port, the switch examines the
destination MAC address of the message and forwards it only
to the port configured to redirect messages that match the
MAC address. This method works for client/server Internet
Protocol (IP) traffic, such as supervisory control and data
acquisition (SCADA) poll and response using Manufacturing
Message Specification (MMS), Modbus TCP/IP, or DNP3
LAN/WAN; however, it does not work for IEC 61850
GOOSE.

The original MIRRORED BITS communications messages
exchanged Boolean information over physically segregated
point-to-point communications channels. In 2000, Utility
Communications Architecture (UCA2) members saw the
value of this peer-to-peer virtual wiring method and created
multicast Boolean exchange over Ethernet, called UCA2
GOOSE. IEDs were capable of reliable generation and
consumption of UCA2 GOOSE messages; however, the

2

inefficiency of navigating IEEE 802.3 CSMA/CD collision
domain Ethernet networks made the use of UCA2 GOOSE
unreliable.

Shortly after the MIRRORED BITS communications message
was modified to convey Boolean, analog, and engineering
access textual information, UCA2 GOOSE was similarly
modified. During this time, UCA2 was merged into the
IEC 61850 communications standard, and UCA2 GOOSE was
renamed IEC 61850 General Substation State Event (GSSE).
A new message was designed to transfer both Boolean and
analog data types, but not engineering access text. This new
message, IEC 61850 GOOSE, was also changed to use the
ISO/IEC 15802-1 MAC Service. As such, IEC 61850 behaves
in a multicast mode without knowledge of the destination
hMAC addresses and uses multicast MAC, or virtual MAC
(vMAC), instead. Therefore, IEC 61850 GOOSE messages
are published to a group destination multicast vMAC address,
which goes to every port.

An Ethernet switch processes every message received or
transmitted by each port. It takes time for switches to process
messages, and this introduces a short, but unavoidable, switch
processing latency delay. If a switch cannot process and
forward all of the messages that it receives, a backlog occurs.
A message waits in a transmitting memory queue for its turn
to be sent. If this occurs, there is a switch queue latency in
addition to the switch processing latency. A message may
need to go through several switches in a network to reach its
destination. When networks are designed with knowledge and
care, the likelihood of a switch queue delay is minimized, but
not eliminated.

An Ethernet switch stores and forwards messages as they
are received over Ethernet cables, similar to the behavior of a
MIRRORED BITS communications switch using serial cables.
Layer 2 GOOSE messages have a multicast address, not a
destination address, and therefore cannot be managed via
mechanisms for MMS, DNP3 LAN/WAN, Telnet, File
Transfer Protocol (FTP), and other IP messages using Layer 3
and above. Multicast (one-to-many) means that each time a
GOOSE message is received on a port, it is automatically sent
to every other port. Even though GOOSE no longer requires
collision detection and mitigation among Ethernet messages
within a collision domain, the use of shared Ethernet
bandwidth provisioning prohibits deterministic, synchronous
GOOSE message exchange.

III. ETHERNET TRAFFIC NAVIGATION TECHNIQUES TO
COMPENSATE FOR SHARED BANDWIDTH BEHAVIOR

One of the techniques to alleviate the network burden of
multicast/broadcast messages is the virtual local-area network
(VLAN). IEEE extended the Ethernet Standard 802.1 with the
designator Q for message quality, which includes extensions
for optional VLANs via a previously unused field in the
Ethernet header tag that becomes a VLAN identifier (VID).
IEEE 802.1Q VLAN, or QVLAN, divides a physically
connected network into several VLANs. While keeping the
sensitive information private, QVLAN techniques can restrict

traffic flow of multicast and/or broadcast messages to a single
QVLAN and therefore the devices within it.

IEC 61850 adopted the use of the IEEE 802.1Q VID as a
QVLAN tag to identify multicast messages and overcome the
inability to perform network routing by performing manual
routing. Because of the unwanted and unstoppable automatic
distribution of multicast messages, the manual routing acts in
reverse. The multicast messages are routed everywhere but are
only allowed to pass through ports from which they have not
been blocked. In IEC 61850 networks, QVLAN tags are
implemented within the multicast message by the publishing
IED and used by switches for manual routing. This is one of
several network processing tasks that have been forced into
the IEDs to compensate for inadequate data flow capabilities
in Ethernet networks. Switches unable to perform QVLAN
filtering, or those configured incorrectly, will not work
properly and may block even wanted GOOSE transfer. Best
engineering practice methods within IEC 61850 dictate a
unique QVLAN identifier for each GOOSE message
publication.

The only effective method to segregate Ethernet multicast
traffic and make GOOSE message navigation behave as
deterministically as possible is to follow these simple rules:

• Assign each GOOSE message a unique QVLAN.
• Assign each GOOSE message a unique vMAC.
• Assign each GOOSE message a unique application

identifier (app ID).
• Assign the last octet of the vMAC, app ID, and

QVLAN the same value.
• Allow no multicast messages on the network without

QVLAN tags.
• Disable all unused switch ports.
• Configure each switch port to use MAC filtering to

block delivery of every multicast message to the
connected IED, except the GOOSE that the IED has
subscribed to within its Substation Configuration
Language (SCL) file.

• Configure each switch port to use QVLAN filtering to
block delivery of every multicast message to the
connected IED, except the GOOSE that the IED has
subscribed to within its SCL file.

IV. ETHERCAT TECHNOLOGY ELIMINATES SHARED
BANDWIDTH BEHAVIOR

A. EtherCAT Overview and Technology Introduction

 1) Level 0 Fieldbus in Process Control
Concurrently with the development of Ethernet networks

for substations, process control engineers have been
considering Ethernet applications for industrial systems. Ever
since the introduction of the programmable logic controller
(PLC), users have looked for methods to more efficiently
connect field I/O with controllers and construct larger
distributed control networks. Many of the techniques used
have been similar to substation networks.

3

 2) S95 or Purdue Network Model
The terminology commonly used to describe components

of industrial networks differs from terms we use for substation
networks. A few of these terms are helpful as part of this
discussion. The S95 (or Purdue) model, as seen in Fig. 1,
represents the hierarchy and nomenclature of networking
systems within industrial manufacturing organizations [3].

Fig. 1. S95 network hierarchy model

Level 0 and Level 1 networks are similar in many ways to
the process bus and station bus concepts that we apply to
substation networks, as shown in Fig. 2. Under the S95 model,
current transformers (CTs), potential transformers (PTs), and
temperature sensors are all considered Level 0 devices.
Remote terminal units (RTUs) and protective relays are
categorized as Level 1.

Fig. 2. Relative comparison of S95 model to substation networks

 3) Evolution of Level 0 Networks
More than thirty years ago, process control systems began

transitioning from hard-wired relay logic and single-function
loop controllers to PLC-based Level 1 systems [4]. The
limited computing capability of early PLCs supported a
relatively small number of field inputs and outputs. Because
of that limitation, I/O wiring could be economically
terminated within the same cabinet as the PLC. However, as
automation vendors developed more advanced PLCs that
accommodated many more field points—and a larger variety
of signal types—users needed an alternative I/O networking
method in order to avoid terminating hundreds or thousands of
points directly in the controller cabinet.

In response, equipment vendors developed I/O devices that
could communicate with a PLC via a specialized network, or
fieldbus. Fieldbus networks were based on EIA-232 or

EIA-485 communications and provided a means for a
controller to read and write large quantities of I/O points via a
single communications cable. Early fieldbus implementations
were based on proprietary network protocols; but in the 1990s,
a number of standard protocols, such as FOUNDATION
fieldbus, became popular in the industry.

B. Development of EtherCAT
The serial networking used for fieldbuses in the 1990s

became bandwidth limited as controllers with larger and larger
processing capabilities were introduced into the market [5].
Use of Ethernet technology as a second generation fieldbus
was a natural evolution, but the inherently nondeterministic
nature of Ethernet created difficult new problems.
Additionally, most Ethernet equipment was not designed for
industrial use, which made the adoption of Ethernet-based
fieldbuses even slower.

A number of Ethernet protocol standards exist that operate
under constraints intended to make them more deterministic.
Some standards use messaging rules to eliminate collisions
and reduce the signal jitter. Others take advantage of Ethernet
switches that use VLANs in order to reduce network burden
within a subnet to only messages sent from or meant for
devices within that subnet.

While these methods improve network determinism, they
still do not make efficient use of the bandwidth. Most of these
protocols adhere to an Ethernet paradigm that each device
sends an entire Ethernet frame for each message and every
message delivered to a device is composed of an entire
Ethernet frame. Each frame can be as long as 1,518 bytes,
even if the usable process information (either inputs or control
outputs) only requires a few bytes. The result, even when
using multicast messages, is that a large amount of the
network traffic is consumed by administrative information.

C. EtherCAT Technology
The developers of EtherCAT created solutions for both the

time and efficiency challenges of Ethernet [6]. The
fundamental difference between EtherCAT and other Ethernet
fieldbus protocols is that a single EtherCAT frame contains
I/O point updates from many devices in a network, not just a
single device. Existing transport protocols could not
accomplish this, so a new EtherType was defined explicitly
for the EtherCAT protocol. As we will see, this approach
provides complete compatibility with Ethernet standards.

 1) Development Objectives and Requirements
Even though it is an open standard protocol today,

EtherCAT began as the invention of Beckhoff Automation.
The main development objectives were as follows:

• Deterministic network operation.
• Fast network update time.
• Efficient use of network bandwidth.
• Compatibility with existing controller Ethernet

hardware.
• Full conformity with the Ethernet standard.
• Economical implementation for small and large I/O

devices.

4

 2) Definition of EtherType for EtherCAT Messages
The EtherCAT frame (shown in Fig. 3) is specifically

designed to incorporate process data from many Ethernet
nodes into a single message. The telegram can extend to
multiple frames, with a maximum size of 4 gigabytes.
Individual devices in the network are configured to read and
write data from specific regions of the telegram, which means
that the telegram mapping sequence is not directly related to
the physical network configuration.

Ethernet Header ECAT EtherCAT Telegram Ethernet

Datagram 1 Datagram 2 Datagram n. . .Frame
HeaderTypeSADA CRC

ECAT – EtherCAT
DA – Destination Address
SA – Source Address
CRC – Cyclic Redundancy Check

Fig. 3. Standard Ethernet frame for EtherCAT messages

As shown in Fig. 4, the independent data mapping allows
designers to create telegrams based on specific process
sequences or mapping preferences in the PLC or other Level 1
controllers.

Fig. 4. Network location independent from EtherCAT mapping

 3) How On-the-Fly Processing Works
In order to achieve the needed network speed for critical

applications, EtherCAT devices use a low-level, on-the-fly
processing method where all devices within a network
segment receive the entire EtherCAT message. The PLC, or
EtherCAT master, begins the sequence by sending a message
with updated output control data and input status from the
previous data cycle.

As the first I/O device in the network starts receiving the
frame, it automatically reads the proper control data from the
telegram and writes updated process data into the telegram.
The first device also automatically forwards the updated
telegram to the next I/O device with a delay of less than
1 microsecond. Each subsequent device similarly reads and
writes the needed portions of the telegram; then the last device
returns the completed message to the PLC. Even in very large
systems, the entire round trip can be completed in less than
100 microseconds.

The hardware interface for each device consists of standard
Ethernet ports. However, each I/O device has a field-
programmable gate array (FPGA) or low-cost application-
specific integrated circuit (ASIC) that reads and writes the
EtherCAT telegram such that the incredibly low signal delay
is maintained. A fieldbus memory management unit (FMMU)
process in the FPGA or ASIC is automatically configured
upon network initialization with the location of relevant input
and output locations in the EtherCAT telegram. Once the
network enters normal operating mode and starts transmitting
telegrams, no time is wasted evaluating the entire telegram.
The FPGA or ASIC can quickly read and write just the needed
memory locations and forward the telegram. After sending the
telegram, the device internally acts on newly received control
commands and updates inputs before the next telegram
arrives.

The PLC maintains overall control system determinism by
starting each telegram transmission on a fixed schedule. Low
processor jitter in modern control hardware enables a
repeatable schedule.

 4) EtherCAT Works Over Switched Networks
EtherCAT exhibits maximum performance on a dedicated

network segment, as shown in the previous section, but the
protocol specification also supports use on a multipurpose
Ethernet network using User Datagram Protocol/Internet
Protocol (UDP/IP) messages. As shown in Fig. 5, the
EtherCAT telegram is simply encapsulated for the UDP
application. While this use case illustrates the flexibility of
EtherCAT, users need to understand that the EtherCAT update
rate degrades over a switched network. The amount of
degradation depends on the Ethernet switches in service and
the overall network performance.

Fig. 5. EtherCAT messaging via a switched network

 5) How Multiple Vendor Products Work on Network –
Open Protocol

The combination of a strong set of conformance tests and
the standard hardware interface (via FPGA or ASIC) results
not only in interoperable devices between many vendors but
also in consistent device performance in an EtherCAT
network. A Level 1 control device can be installed with digital
I/O modules from one vendor, analog I/O from a second
vendor, and motor drives from a third. As long as each device
is EtherCAT compliant, the network operates properly.

5

V. PERFORMANCE TESTING
Two tests were conducted in order to compare the round

trip performance of a standard switched Ethernet network and
an EtherCAT network. Each test consisted of the following
two parts:

• Part 1 of the test was performed between two devices
connected to the network to measure the time it would
take to exchange I/O information.

• In Part 2, additional devices were added to the
network to determine how the communications
between the two initial devices would be affected.

A. Test 1 – Switched Ethernet Network
Two devices, A and B, were connected to an Ethernet

switch, as shown in Fig. 6. Device B was constantly
monitoring the status of a digital input on Device A, using
IEC 61850 GOOSE messages. When the digital input
asserted, Device B was notified and immediately sent a
GOOSE message back to Device A in order to activate a
digital output.

GOOSE

Device A

Ethernet
Switch

Device B

Pushbutton Lamp
Indicator

Fig. 6. First test configuration

The propagation time of the information from the assertion
of the input to the activation of the output was measured using
the 1-millisecond resolution Sequential Events Recorder
(SER) in Device A. The time was calculated by subtracting
the time stamp of the input from the time stamp of the
assertion of the output. The input was generated several times
in order to create multiple events. For each one of the events,
the propagation time was 10 milliseconds.

Then the network was modified. Four additional devices
were connected to the switch, each of them exchanging input
and output information with Device B. This means that there
were five devices attempting to communicate with one single
node (Device B), as can be seen in Fig. 7.

Fig. 7. Additional devices added to the network to increase traffic to
Device B

Under these new conditions, the experiment was repeated.
The digital input on Device A was activated several times to
create multiple events in order to measure the message
propagation time from Device A to Device B and back to
Device A. This time, the result obtained was different from the
first experiment. The values obtained from each event were
different. In twenty activations of the input, the minimum
propagation time registered was 10 milliseconds (same time as
in the first experiment), the maximum propagation time was
16 milliseconds, and the mean was 12 milliseconds.

As we can see in this example, the response time changes
when the network load is increased. The variability is due to
each device on the network sending an independent Ethernet
frame to Device B.

B. Test 2 – EtherCAT Network
Next, we tested an EtherCAT network in a similar way. An

IED (Device A) read the status of a digital input from a remote
module (Device B) and activated a remote digital output when
the input asserted. The architecture is shown in Fig. 8.

Fig. 8. Device A reads input and writes output on Device B

The propagation time of the EtherCAT frame was
calculated using the time stamp of a 1-millisecond SER. As in
the previous test, the digital input was activated several times
in order to register multiple events. For this experiment, the
minimum propagation time registered was 9.3 milliseconds
and the maximum was 12.3 milliseconds.

Then four more devices were added to the EtherCAT
network to increase the amount of data sent to Device A. Each
additional device sent digital input statuses to Device A, as
shown in Fig. 9.

Fig. 9. Four additional devices added to the EtherCAT network to increase
information traffic to Device A

Multiple events were triggered and logged in the SER. The
results were identical to the original test system. The
minimum time was 9.3 milliseconds, and the maximum was
12.3 milliseconds. In other words, the additional signals in the
network did not affect the propagation time of the data.

6

Some of the reasons that explain this result are as follows:
• There is a single master on the network instead of

multiple devices attempting to communicate
independently with one single device.

• Slave devices connected to the network do not read
and process the complete Ethernet frame. Each slave
extracts and inserts only the relevant data while the
frame passes through it.

• EtherCAT frame processing is done independently of
the response time of any microcontroller.

VI. PROCESSING OF INPUT MESSAGES
Frequently, in RTU applications, many digital inputs need

to be processed to evaluate the state of substation equipment.
As an evaluation of such an application, we compared the
processing of GOOSE messages and EtherCAT telegrams in
an RTU central processing unit (CPU). For each protocol, the
CPU received 2,592 digital inputs.

For the case of using GOOSE as the I/O network, if there
are 48 I/O modules that each report 54 digital inputs, the CPU
can subscribe to and receive all 48 GOOSE messages every
10 milliseconds. Because each GOOSE message contains
1,518 bytes, the CPU needs to evaluate 72,864 bytes of data.

Using the same CPU to similarly receive the inputs via
EtherCAT, we use 108 digital input modules. All of the
modules reside on the same network segment, and the CPU
can receive all inputs every 500 microseconds. Because all of
the modules share EtherCAT messages, reducing overhead,
the CPU evaluates only 4,500 bytes of data.

VII. BENEFITS OF ETHERCAT NETWORKS
High-speed, distributed RTU, control, and protection

schemes depend on deterministic network operation and fast
processing. For example, utility implementations of
distributed fast bus trip algorithms have been infrequent due to
the expense and complexity of the equipment. EtherCAT
networks provide a means to deploy an economical bus
supervision and fast bus trip system. As shown in Fig. 10, the
EtherCAT network monitors each feeder and disconnect
switch for a sample substation bus. This topology allows the
controller to quickly identify a fault that is cleared by a feeder
relay or incoming transformer protection. The bus protection
uses this information to delay tripping of the bus unless no
monitoring unit identifies the fault. The bus relay can clear the
entire bus quickly in case of an internal fault or breaker failure
on a feeder.

Controller
M

EtherCAT Monitoring Module=

EtherCAT
Network

M M

MMMMMMMM

M

Fig. 10. Bus network overview

A. Improved Network Availability
EtherCAT natively includes diagnostics that can help

improve control system operational security and availability.
Each I/O module includes a watchdog triggered by valid
EtherCAT messages. If the watchdog expires, the module
declares a network error. I/O modules exist that use this error
case to deassert all outputs in order to avoid unintended
changes of state. Some vendors have I/O modules that include
a further supervisory watchdog that monitors the FPGA or
EtherCAT ASIC. The supervisory watchdog deasserts outputs
in case of a module processing error.

The network controller also monitors network-wide system
health in the following two ways:

• Each EtherCAT message includes a working counter
value updated by each module in the network. If this
counter returns to the controller with something other
than the expected value, the controller immediately
knows there is a network error. Users may determine
how their system should respond to these network
errors.

• Each module can report status information as part of
an EtherCAT message. The status includes tags
concerning the health of the module hardware and the
network. The combination of the working counter and
module status allows users to quickly identify and
diagnose I/O system issues.

B. No Performance Degradation for Multivendor Network
The design of the EtherCAT message structure and

network interface provides built-in interoperability when users
install I/O modules from multiple vendors. Whether a given
module has a very simple function and little data processing or
includes complex algorithms via an independent processor, the
network interface for EtherCAT is standard. Once a user
configures the network membership and the network traffic
commences, the I/O update time is consistent and measurable.
Because every tag is updated during each message, the overall
update rate does not vary depending on the dynamics of the
system under control.

7

VIII. CONCLUSION
In this paper, we have shown how EtherCAT can be

effectively used for real-time RTU and remote I/O
applications. The design of EtherCAT provides the flexibility
of Ethernet and operates deterministically.

IX. REFERENCES
[1] D. Dolezilek, “Using Information From Relays to Improve the Power

System – Revisited,” proceedings of the Protection, Automation and
Control World Conference, Dublin, Ireland, June 2010.

[2] ISO/IEC DTR 8802-1, “Information technology – Telecommunications
and information exchange between systems – Local and metropolitan
area networks – Technical Reports and Guidelines – Part 1: Overview of
Local Area Network Standards,” 3rd ed., ISO/IEC, 1999.
Available: http://www.ieee802.org/1/files/public/docs2000/J1n6125.pdf.

[3] Rockwell Automation, Ethernet Design Considerations for Control
System Networks: An Introduction, November 2007. Available:
http://samplecode.rockwellautomation.com/idc/groups/literature/
documents/so/enet-so001_-en-e.pdf.

[4] G. Platt, Process Control: A Primer for the Nonspecialist and the
Newcomer, 2nd ed., ISA, 1998.

[5] M. T. Hoske, “High Performance Industrial Networks,” Control
Engineering, July 2010, pp. 28–32.

[6] EtherCAT Technology Group, “EtherCAT – the Ethernet fieldbus.”
Available: http://ethercat.org/pdf/ethercat_e.pdf.

X. BIOGRAPHIES
David Dolezilek received his BSEE from Montana State University and is the
technology director of Schweitzer Engineering Laboratories, Inc. He has
experience in electric power protection, integration, automation,
communication, control, SCADA, and EMS. He has authored numerous
technical papers and continues to research innovative technology affecting the
industry. David is a patented inventor and participates in numerous working
groups and technical committees. He is a member of the IEEE, the IEEE
Reliability Society, CIGRE working groups, and two International
Electrotechnical Commission (IEC) technical committees tasked with global
standardization and security of communications networks and systems in
substations.

Francisco Chumbiauca is originally from Lima, Peru. He attended
Universidad Peruana de Ciencias Aplicadas (Peruvian University of Applied
Sciences) and received his bachelor’s degree in Electrical Engineering in
2005. Francisco worked for Schneider Electric as an intern from 2004 to
2005. From 2006 to 2009, he worked for Rockwell Automation as a field
support and training engineer for the Andean Region, traveling throughout
Peru, Ecuador, Colombia, and Venezuela and assisting customers with
startup, maintenance, and troubleshooting of Allen Bradley controllers and
industrial networks. Francisco joined Schweitzer Engineering Laboratories,
Inc. in July 2010 as an automation engineer.

Michael Rourke received his BSEE and Masters of Engineering in Electrical
Engineering from the University of Idaho. He spent ten years working on
research and development of control systems for steel and aluminum facilities
and is a member of the Association of Iron and Steel Technology. He joined
Schweitzer Engineering Laboratories, Inc. in 2000. Michael works on product
development for automation and integration applications.

© 2011 by Schweitzer Engineering Laboratories, Inc.
All rights reserved.

20110201 • TP6474-01

	CoverPage_20150318
	6474_ApplicationEthernet_MR_20110201

