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Tutorial on Symmetrical Components 
Part 2: Answer Key 

Ariana Amberg and Alex Rangel, Schweitzer Engineering Laboratories, Inc. 

Abstract—Symmetrical components and the per-unit system 
are two of the most fundamental and necessary types of 
mathematics for relay engineers and technicians. We must 
practice these techniques in order to fully understand and feel 
comfortable with them. This white paper provides both 
theoretical and real-world examples with questions and solutions 
that can be used to gain experience with symmetrical 
components. 

I.  INTRODUCTION 
The method of symmetrical components is used to simplify 

fault analysis by converting a three-phase unbalanced system 
into two sets of balanced phasors and a set of single-phase 
phasors, or symmetrical components. These sets of phasors 
are called the positive-, negative-, and zero-sequence 
components. These components allow for the simple analysis 
of power systems under faulted or other unbalanced 
conditions. Once the system is solved in the symmetrical 
component domain, the results can be transformed back to the 
phase domain. 

The topic of symmetrical components is very broad and 
can take considerable time to cover in depth. A summary of 
important points is included in this introduction, although it is 
highly recommended that other references be studied for a 
more thorough explanation of the mathematics involved. Refer 
to [1], [2], [3], [4], and [5] for more information on 
symmetrical components. 

A.  Converting Between the Phase and Symmetrical 
Component Domains 

Any set of phase quantities can be converted into 
symmetrical components, where α is defined as 1∠120, as 
follows: 
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where I0, I1, and I2 are the zero-, positive-, and negative-
sequence components, respectively. This equation shows the 
symmetrical component transformation in terms of currents, 
but the same equations are valid for voltages as well. 

This results in the following equations: 
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Likewise, a set of symmetrical components can be 
converted into phase quantities as follows: 
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This results in the following equations: 
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These conversions are valid for an A-phase base, which 
can be used for A-phase-to-ground, B-phase-to-C-phase, 
B-phase-to-C-phase-to-ground, and three-phase faults. In 
Section V, Example 4 shows how the base changes for other 
irregular fault types. These conversions are also only valid for 
an ABC system phase rotation. In Section VI, Example 5 
shows how the equations change for an ACB system phase 
rotation. 

A calculator was created in Microsoft® Excel® to allow us 
to convert between the phase and symmetrical component 
domains. This calculator is available for download with this 
white paper at http://www.selinc.com/. 

B.  Transformer Representations in the Sequence Networks 
For information on the formation of the sequence networks 

as well as the representation of power system components in 
the sequence networks, see [1] and [2]. 
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Transformers are simply represented as their positive- and 
negative-sequence impedances in the positive- and negative- 
sequence networks, respectively. However, the transformer 
representation in the zero-sequence network can be more 
complex and is dependent on the type of transformer 
connection. Fig. 1 shows some common transformer 
connections and the equivalent zero-sequence representations. 
For a complete list of transformer connections, see [1]. 

Transformer Connection Zero-Sequence Circuit

Zn

N0

ZT

N0

ZT

N0

ZT

3Zn

N0

ZT

N0

ZT

 

Fig. 1. Zero-sequence circuits for various transformer types 

C.  Connecting the Sequence Networks 
Once the sequence networks for the system are defined, the 

way they are connected is dependent on the type of fault. 
Sequence network connections for common shunt fault types 
are shown in the remainder of this subsection. For complete 
derivations of these network connections as well as sequence 
network connections for series faults, see [2]. In the 
connections that follow, ZF is defined as the fault impedance 
from each phase to the common point, and ZG is defined as 
the impedance from the common point to ground. The ZG 
term is only significant when ZF differs per phase or if the 
line impedance to the fault point is different between phases. 
The typical assumptions are that ZF is the same across all 
phases and the line impedances are equal, and therefore, the 
ZG term is neglected. 

For a three-phase fault, the positive-sequence network is 
used with the fault point connected back to the neutral bus, as 
shown in Fig. 2.  

N1

F1
ZF 

I1
 

Fig. 2. Sequence network connections for a three-phase fault 

For a single-phase-to-ground fault, the three networks are 
connected in series. Any fault impedance is multiplied by 3 
and included in this connection, as shown in Fig. 3. 

N1

F1

3ZF

N2

F2

N0

F0

I1

I2

I0
 

Fig. 3. Sequence network connections for a single-phase-to-ground fault 

For a phase-to-phase fault, the positive- and negative-
sequence networks are connected in parallel, as shown in 
Fig. 4. 

F1

N1

F2

N2

I1 I2

ZF

 

Fig. 4. Sequence network connections for a phase-to-phase fault 

For a double-line-to-ground fault, all three networks are 
connected in parallel, as shown in Fig. 5. 

I2 I0
F1

N1

F2

N2

I1 ZF

F0

N0

ZF + 3ZGZF

 

Fig. 5. Sequence network connections for a double-line-to-ground fault 

D.  The Per-Unit System 
The per-unit system puts all the values of a power system 

on a common base so they can be easily compared across the 
entire system. To use the per-unit system, we normally begin 
by selecting a three-phase power base and a line-to-line 
voltage base. We can then calculate the current and impedance 
bases using the chosen power and voltage bases as shown: 

 base
base

base

S
I

3 • V
=  (5) 

 
( )2

base
base

base

V
Z

S
=  (6) 

Any power system value can be converted to per unit by 
dividing the value by the base of the value, as shown: 

 Actual quantityQuantity in per unit
Base value of quantity

=  (7) 

Likewise, a per-unit value can be converted to an actual 
quantity at any time by multiplying the per-unit value by the 
base value of that quantity. 



3 

 

To convert impedances from one base to another, use the 
following equation: 

 
2new old

new old base base
pu pu old new

base base

S V
Z Z •

S V
 

=   
 

 (8) 

For more information on the per-unit system, see [1]. 

E.  Examples 
The rest of this paper consists of theoretical and practical 

examples that can be used to practice and gain experience in 
symmetrical component and per-unit techniques. Each 
example consists of questions to guide the reader through the 
analysis as well as complete solutions. In the cases with real-
world events, the event records from the relays are available 
for download with this white paper and the reader should use 
ACSELERATOR Analytic Assistant® SEL-5601 Software to 
view them (available for free download at 
http://www.selinc.com). 

II.  EXAMPLE 1: SINGLE-PHASE VERSUS  
THREE-PHASE FAULT CURRENT 

This example shows how to calculate fault currents for two 
different fault types at two different locations on a distribution 
system. Fig. 6 shows the radial system with two possible fault 
locations. 

Relay

1

2

Source

XFMR

Bus Load

Line

 

Fig. 6. Radial system with two fault locations 

II-a On a radial distribution feeder, what type of fault do 
we expect to produce the largest fault current? 

This depends on the fault location and transformer type, as 
we see in this example.  

II-b Using symmetrical components, solve for the 
maximum fault current for a bolted three-phase fault at 
Location 1. 

Because a three-phase fault is balanced, no negative- or 
zero-sequence currents are present, and therefore, only the 
positive-sequence network is used. The following figure 
shows the positive-sequence network with only the positive-
sequence impedance of the transformer, because the fault is 
just past the secondary windings of the transformer. 

+

–

ZT1
I1

V1 = 1 pu

 

The positive-sequence current can be solved for by 
dividing the positive-sequence voltage by the positive-
sequence impedance of the transformer. 

 1
1

T1

VI
Z

=   

Because IA = I0 + I1 + I2 and I0 and I2 are zero, then: 

 A 1
T1

1I I
Z

= =   

II-c Using symmetrical components, solve for the 
maximum fault current for a phase-to-ground fault at 
Location 1. 

The following figure shows the sequence networks 
connected in series for a single-phase-to-ground fault. 

+

–

ZT1
I1

V1 = 1 pu

ZT2

ZT0

3RFI2
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The positive-, negative-, and zero-sequence currents are 
equivalent and can be solved for by dividing the positive-
sequence voltage by the equivalent impedance of the network. 

 1
1

T1 T2 T0 F

VI
Z Z Z 3R

=
+ + +

  

If we assume that ZT1 = ZT2 = ZT0 and there is zero fault 
resistance, then: 

 1 2 0
T1

1I I I
3Z

= = =   

 A 0 1 2
T1

1I I I I
Z

= + + =   

II-d Assume a core-type transformer with a zero-sequence 
impedance of 85 percent of the positive-sequence 
impedance. Solve for the fault current for a phase-to-
ground fault at Location 1, and compare the results 
with that of a three-phase fault. 

A core-type transformer has a lower exciting impedance, 
and the zero-sequence impedance can be 85 to 100 percent of 
the positive-sequence impedance [6]. If we assume a core-type 
transformer, then ZT0 = 0.85 • ZT1. 

 1
1 2 0

T1 T2 T1 T1

V 1I I I
Z Z 0.85• Z 2.85• Z

= = = =
+ +

  

 A 0 1 2
T1 T1

3 1.05I I I I
2.85• Z Z

= + + = =   
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Assuming a core-type transformer, a phase-to-ground fault 
can produce more fault current than a three-phase fault when 
the fault is at the bus. The event report titled Example 1A.cev 
shows an evolving fault where the fault current for the line-to-
ground fault is larger than that of the three-phase fault. See [7] 
and [8] for a complete analysis of this event. 

II-e Using symmetrical components, solve for the 
maximum fault current for a three-phase fault at 
Location 2. 

The sequence network for the new fault location is the 
same as for the previous fault location, except now we have 
the line impedance included. This is shown in the following 
figure. 

+

–

ZT1
I1

V1 = 1 pu

ZL1

 

The positive-sequence current can be solved for as follows: 

 1
1

T1 L1

VI
Z Z

=
+

  

Because IA = I0 + I1 + I2 and I0 and I2 are zero, then: 

 A 1
T1 L1

1I I
Z Z

= =
+

  

II-f Using symmetrical components, solve for the 
maximum fault current for a phase-to-ground fault at 
Location 2. Is this greater than or less than the fault 
current for a three-phase fault? 

The following figure shows the sequence networks 
connected in series for a single-phase-to-ground fault, with the 
line impedance included because of the new fault location. 

ZL2

ZL0

+

–

ZT1
I1

V1 = 1 pu

ZL1

ZT2

ZT0

3RFI2

I0

 

The positive-, negative-, and zero-sequence currents are 
equivalent and can be solved for by dividing the positive-
sequence voltage by the equivalent impedance of the network. 

 1
1

T1 L1 T2 L2 T0 L0 F

VI
Z Z Z Z Z Z 3R

=
+ + + + + +

  

Assume that ZT1 = ZT2 = ZT0 and there is zero fault 
resistance. Also assume that ZL1 = ZL2 and ZL0 = 3 • ZL1. 

 1 2 0
T1 L1

1I I I
3Z 5Z

= = =
+

  

 
( )A 0 1 2

T1 L1 T1 L1

3 1I I I I
3Z 5Z Z 1.67 • Z

= + + = =
+ +

  

Comparing the results for the fault at Location 2, we can 
conclude that for a fault out on the feeder, the fault current 
produced by a three-phase fault is larger than that produced by 
a single-phase-to-ground fault. This is because, for a fault out 
on the feeder, the zero-sequence line impedance (which is 
typically larger than the positive-sequence line impedance) 
begins to dominate and make the line-to-ground fault current 
less than that of a three-phase fault. The event report titled 
Example 1B.cev shows an evolving fault where the fault 
current for the three-phase fault is larger than that of the line-
to-ground fault. See [7] and [8] for a complete analysis of this 
event. 

III.  EXAMPLE 2: PER-UNIT SYSTEM AND  
FAULT CALCULATIONS 

This example shows how to work in the per-unit system 
and calculate fault currents for faults at the high-voltage 
terminals of the step-up transformer shown in Fig. 7. The 
prefault voltage at the fault location is 70 kVLL, and the 
generator and transformer are not connected to the rest of the 
power system. The source impedances shown are the 
subtransient reactances (Xd'') of the generator [9]. 

=

=
1

2

Z j17.5%
Z j13.5%

11.8 66  kV
75 MVA
j10.0%

= ΩnZ 58 

11.8 kV
75 MVA

 

Fig. 7. One-line diagram for fault current calculations 

III-a Select power and voltage bases for the per-unit 
system, and calculate current and impedance bases 
accordingly. 

To use the per-unit system, first choose a power base and a 
voltage base. We choose a three-phase power base of 
100 MVA and voltage bases as defined by the transformer: 

Sbase = 100 MVA 
Vbase_delta = 11.8 kV 
Vbase_wye = 66 kV 
Notice that it is possible to have multiple voltage bases. We 

start by choosing one voltage base and then use the voltage 
ratios of the transformers to convert the original voltage base 
to all the other parts of the system. This means that at every 
transformer, there will be a voltage base conversion. 

We then calculate the current and impedance bases using 
the power and voltage bases and (5) and (6). Depending on the 
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voltage base that is active for the area we are working in, we 
will calculate different current and impedance bases. 

On the delta side of the transformer, using Vbase_delta: 

 base
base _ delta

base _ delta

S 100 MVAI 4.89 kA
3 • V 3 •11.8 kV

= = =   

 
( ) ( )

2 2
base _ delta

base _ delta
base

V 11.8 kV
Z 1.39 

S 100 MVA
= = = Ω   

On the wye side of the transformer, using Vbase_wye: 

 base
base _ wye

base _ wye

S 100 MVAI 874.77 A
3 • V 3 • 66 kV

= = =   

 
( ) ( )

2 2
base _ wye

base _ wye
base

V 66 kV
Z 43.56 

S 100 MVA
= = = Ω   

III-b Convert all impedances on the system as well as the 
prefault voltage to a common base. 

To convert per-unit impedances from one base to another, 
use (8). The generator and transformer impedances are given 
in per unit on a 75 MVA, 11.8 kV base and need to be 
converted to a 100 MVA base. 

 
2

G1
100 MVA 11.8 kVZ j0.175 j0.233 pu
75 MVA 11.8 kV

 = = 
 

  

 
2

G2
100 MVA 11.8 kVZ j0.135 j0.180 pu
75 MVA 11.8 kV

 = = 
 

  

 
2

T1 T2 T0
100 MVA 11.8 kVZ Z Z j0.10 j0.133 pu
75 MVA 11.8 kV

 = = = = 
 

  

The neutral impedance is given in ohms on the wye side of 
the transformer, so we need to divide it by the wye-side 
impedance base to convert it to per unit. 

 n
58Z 1.332 pu

43.56
= =   

Convert the prefault voltage at the fault location to per unit 
by dividing by the wye-side voltage base. 

 pre
f

70 kVV 1.06 pu
66 kV

= =   

III-c Draw the positive-, negative-, and zero-sequence 
networks for this system up to the fault point. 

The following figure shows the positive-, negative-, and 
zero-sequence networks for the system up to the fault location. 
The positive- and negative-sequence networks are similar, 
while the zero-sequence network has a break in it due to the 
delta connection of the transformer. 

ZT2 = j0.133

3Zn = 3.99

+

–

ZG1 = j0.233I1

V1 = 1.06 pu

ZT1 = j0.133

ZG2 = j0.18

ZG0
I0 ZT0 = j0.133

N1

N2

N0

I2

 

III-d What are the maximum short-circuit phase currents for 
a three-phase fault? 

A three-phase fault is balanced and has no negative- or 
zero-sequence current. Therefore, only the positive-sequence 
network is connected, as shown in the following figure. 

 

ZT2 = j0.133

3Zn = 3.99

+

–

ZG1 = j0.233I1

V1 = 1.06 pu

ZT1 = j0.133

ZG2 = j0.18

ZG0

I2

ZT0 = j0.133

N1

N2

N0

I0

 

The positive-sequence current can be solved for by 
dividing the positive-sequence voltage by the impedances in 
the positive-sequence network. 

 1
1.06I j2.89 pu or 2.89 –90 pu

j0.233 j0.133
= = − ∠

+
  

 A 0 1 2I I I I 2.89 –90 pu= + + = ∠   

Convert the A-phase current from per unit to amperes by 
multiplying by the appropriate current base, Ibase_wye. 
 AI 2.89 •874.77 2528 –90 A= = ∠   
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Because an ideal three-phase fault is balanced, |IA| = |IB| = 
|IC|, and they are all 120 degrees out of phase, then: 

 B

C

I 2528 150 A
I 2528 30 A
= ∠
= ∠

  

III-e What are the maximum short-circuit phase currents for 
a B-phase-to-C-phase fault? 

For a phase-to-phase fault, the positive- and negative-
sequence networks are connected in parallel at the fault point, 
as shown in the following figure. 

ZT2 = j0.133

3Zn = 3.99

+

–

ZG1= j0.233I1

V1 = 1.06 pu

ZT1 = j0.133

ZG2 = j0.18

ZG0

I2

ZT0 = j0.133

N1

N2

N0

I0

 

From this diagram, we can observe that I1 = –I2. We can 
solve for I1 as follows: 

 1

2

1.06I 1.56 –90 pu
j0.233 j0.133 j0.18 j0.133

I 1.56 90 pu

= = ∠
+ + +

= ∠
  

 
A 0 1 2

2
B 0 1 2

2
C 0 1 2

I I I I 0

I I I I 2.7 pu

I I I I 2.7 pu

= + + =

= +α +α = −

= +α +α =

  

Convert the phase currents from per unit to amperes by 
multiplying by the appropriate current base, Ibase_wye. 

 B

C

I 2.7 •874.77 2361.8 180 A
I 2.7 •874.77 2361.8 0 A
= − = ∠
= = ∠

  

Notice that IA is zero and IB is 180 degrees out of phase 
with IC, which is the ideal case for a phase-to-phase fault on 
the B- and C-phases. 

III-f What are the maximum short-circuit phase currents for 
an A-phase-to-ground fault? 

For a single-phase-to-ground fault, the three sequence 
networks are connected in series at the fault point, as shown in 
the following figure. 

ZT2 = j0.133

3Zn = 3.99

+

–

ZG1 = j0.233I1

V1 = 1.06 pu

ZT1 = j0.133

ZG2 = j0.18

ZG0

I2

ZT0 = j0.133

N1

N2

N0

I0

 

From this diagram, we can observe that I1 = I2 = I0. We can 
solve for I1 as follows: 

 1

2 0

1.06I
j0.233 j0.133 j0.18 j0.133 j0.133 3.99

0.2603 –11.5 pu I I

=
+ + + + +
= ∠ = =

  

 
A 0 1 2 1

2
B 0 1 2

2
C 0 1 2

I I I I 3I 0.7809 –11.5 pu

I I I I 0

I I I I 0

= + + = = ∠

= +α +α =

= +α +α =

  

Convert the A-phase current from per unit to amperes by 
multiplying by the appropriate current base, Ibase_wye. 
 AI 0.7809 •874.77 683.1 –11.5 A= = ∠   

IV.  EXAMPLE 3: FAULT CALCULATIONS  
FOR A NONRADIAL SYSTEM 

This example shows how to work in the per-unit system 
and calculate fault currents for a nonradial system, as shown 
in Fig. 8. The prefault voltage at the fault location is 1.05 per 
unit, and the load current is negligible. The source impedances 
shown are the subtransient reactances (Xd'') of the generators 
[3]. 

=

=

=

1

2

0

Z j15%
Z j17%
Z j5% 13.8 138 kV

100 MVA
j10%

Line1 Line2

Line0

Z Z j20 
Z j60 
= = Ω

= Ω R1

R2

R0

n

Z j20%
Z j21%
Z j10%

Z j0.05 pu

=

=

=

=

138 13.8 kV
100 MVA

j10%

Tx Ty

13.8 kV
100 MVA

13.8 kV
100 MVAS R

 

Fig. 8. One-line diagram of a nonradial system 
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IV-a Select power and voltage bases for the per-unit 
system, and calculate the current and impedance bases 
accordingly. 

To use the per-unit system, first choose a power base and a 
voltage base. We choose a three-phase power base of 
100 MVA and voltage bases as defined by the transformers: 

Sbase = 100 MVA 
Vbase_line = 138 kV 
Vbase_buses = 13.8 kV 
Notice that it is possible to have multiple voltage bases. We 

start by choosing one voltage base and then use the voltage 
ratios of the transformers to convert the original voltage base 
to all the other parts of the system. This means that at every 
transformer, there will be a voltage base conversion. 

We then calculate the current and impedance bases using 
the power and voltage bases along with (5) and (6). 
Depending on the voltage base that is active for the area we 
are working in, we will calculate different current and 
impedance bases. 

On the line side of the transformers, using Vbase_line: 

 base
base _ line

base _ line

S 100 MVAI 418.37 A
3 • V 3 •138 kV

= = =   

 
( ) ( )

2 2
base _ line

base _ line
base

V 138 kV
Z 190.44 

S 100 MVA
= = = Ω   

On the buses, which are on the delta sides of the 
transformers, using Vbase_buses: 

 base
base _ buses

base _ buses

S 100 MVAI 4183.7 A
3 • V 3 •13.8 kV

= = =   

 
( ) ( )

2 2
base _ buses

base _ buses
base

V 13.8 kV
Z 1.90 

S 100 MVA
= = = Ω   

IV-b Convert all impedances on the system as well as the 
prefault voltage to a common base. 

The generator and transformer impedances are already on 
the correct bases. The only impedances that need to be 
converted are the line impedances. 

To convert the line impedances from ohms to per unit, 
divide them by Zbase_line. 

 Line1 Line2
j20Z Z j0.105 pu

190.44
= = =   

 Line0
j60Z j0.315 pu

190.44
= =   

IV-c Draw the positive-, negative-, and zero-sequence 
networks for this system. 

The following figure shows the positive-, negative-, and 
zero-sequence networks for the system. The positive- and 
negative-sequence networks are similar, while the zero-
sequence network has two breaks in it due to the delta 
connections of the transformers. 

+

–

ZS1 = j0.15

I1S

V1 = 1.05 pu

ZTx1 = j0.10

ZS0 = j0.05

N1

N2

N0

+

–

I0S

V1 = 1.05 pu

ZLine1 = j0.105

ZTy1 = j0.10

ZR1 = j0.20

I1R

ZS2 = j0.17

I2S ZTx2 = j0.10

ZLine2 = j0.105

ZTy2 = j0.10

ZR2 = j0.21

I2R

ZTx0 = j0.10

ZLine0 = j0.315

ZTy0 = j0.10
I0R

ZR0 = j0.10

3Zn = j0.15

 

These networks can be simplified by combining the 
impedances on each side of the fault point, as shown in the 
following figure. The positive-sequence network is further 
simplified by combining both voltage sources into one 
equivalent source. 

+

–
V1 = 1.05 pu

N2

N0

I2S Z2 = j0.475

ZR2 = j0.21

I2R

I0R

ZR0 = j0.25

I1S Z1 = j0.455

ZR1 = j0.20

I1R

N1
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IV-d What are the maximum short-circuit phase currents for 
a three-phase fault? 

A three-phase fault is balanced and has no negative- or 
zero-sequence current. Therefore, only the positive-sequence 
network is connected, as shown in the following figure. 

+

–
V1 = 1.05 pu

I1S Z1 = j0.455

ZR1 = j0.20

I1R

N1

I1S

Z1 = j0.455 ZR1 = j0.20

I1R

–

+
V1 = 1.05 pu

N1

I1

I1

 

The positive-sequence current through the fault can be 
solved as follows: 

 
1 1S 1R

1

I I I
1.05 1.05I 7.557 –90 pu

j0.455 j0.20

= +

= + = ∠
  

For a three-phase fault, I0 and I2 are both 0.  
Convert from the sequence to the phase domain as follows: 

 
A 0 1 2

2
B 0 1 2

2
C 0 1 2

I I I I 7.557 –90 pu

I I I I 7.557 150 pu

I I I I 7.557 30 pu

= + + = ∠

= +α +α = ∠

= +α +α = ∠

  

Convert the phase currents from per unit to amperes by 
multiplying by Ibase_buses. 

 
A

B

C

I 7.557 –90 • 4183.7 31.62 –90 kA
I 7.557 150 • 4183.7 31.62 150 kA
I 7.557 30 • 4183.7 31.62 30 kA

= ∠ = ∠
= ∠ = ∠
= ∠ = ∠

  

IV-e What are the maximum short-circuit phase currents for 
a B-phase-to-C-phase fault? 

For a phase-to-phase fault, the positive- and negative-
sequence networks are connected in parallel at the fault point, 
as shown in the following figure. On the right side of the 
figure, the networks are represented by their equivalent 
impedances for simplification. 

+

–
V1 = 1.05 pu

I1S

Z1 = j0.455

ZR1 = j0.20

I1R

N1

I2S

Z2 = j0.475

ZR2 = j0.21

I2R
Z1 = j0.1389 Z2 = j0.1456

+

– V1 = 1.05 pu

N1

N2

N2

I1 I2

I1 I2

 

From this diagram, we can observe that I1 = –I2 and I0 = 0. 
We can solve for I1 as follows: 

 1

2

1.05I 3.69 –90 pu
j0.1389 j0.1456

I 3.69 90 pu

= = ∠
+
= ∠

  

Convert from the sequence domain to the phase domain as 
follows: 

 
A 0 1 2

2
B 0 1 2

2
C 0 1 2

I I I I 0

I I I I 6.39 180 pu

I I I I 6.39 0 pu

= + + =

= +α +α = ∠

= +α +α = ∠

  

Convert the phase currents from per unit to amperes by 
multiplying by Ibase_buses. 

 
A

B

C

I 0
I 6.39 180 • 4183.7 26.73 180 kA

I 6.39 0 • 4183.7 26.73 0 kA

=
= ∠ = ∠
= ∠ = ∠

  

Notice that IA is zero and IB is 180 degrees out of phase 
with IC, which is expected for a phase-to-phase fault on the B- 
and C-phases. 

IV-f What are the maximum short-circuit phase currents for 
a B-phase-to-C-phase-to-ground fault? 

For a double-line-to-ground fault, the three sequence 
networks are connected in parallel at the fault point, as shown 
in the following figure assuming zero fault resistance. On the 
right side of the figure, the networks are represented by their 
equivalent impedances for simplification. 

+

–
V1 = 1.05 pu

I1S

Z1 = j0.455

ZR1 = j0.20

I1R

N1

I1

Z2 = j0.475

ZR2 = j0.21

I2R

Z1 = j0.1389

Z2 = j0.1456

+

– V1 = 1.05 pu

N1

N2

N2

ZR0 = j0.25

I0

ZR0 = j0.25

N0

N0

I1 I2 I0
I2

I2S
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From the diagram, we can solve for I1 as follows: 

 
( )1
1.05I 4.547 –90 pu

j0.1389 j0.1456 || j0.25
= = ∠

+
  

We can solve for the negative- and zero-sequence currents 
using a current divider and the positive-sequence current. 

 

R0
2 1

2 R0

Z
I I

Z Z

j0.254.547 90 2.87 90 pu
j0.1456 j0.25

 
= − = + 

 
∠ = ∠ + 

  

 

2
0 1

2 R0

ZI I
Z Z

j0.14564.547 90 1.67 90 pu
j0.1456 j0.25

 
= − = + 

 
∠ = ∠ + 

  

Convert from the sequence domain to the phase domain as 
follows: 

 
A 0 1 2
2

B 0 1 2
2

C 0 1 2

I I I I 0

I I I I 6.90 158.66 pu

I I I I 6.90 21.33 pu

= + + =

= +α +α = ∠

= +α +α = ∠

  

Convert the phase currents from per unit to amperes by 
multiplying by Ibase_buses. 

 
A

B

C

I 0
I 6.90 158.66 • 4183.7 28.85 158.66 kA
I 6.90 21.33• 4183.7 28.85 21.33 kA

=
= ∠ = ∠
= ∠ = ∠

  

IV-g What are the maximum short-circuit phase currents for 
an A-phase-to-ground fault? 

For a single-phase-to-ground fault, the three sequence 
networks are connected in series at the fault point, as shown in 
the following figure. 

+

–
V1 = 1.05 pu

N2

N0

I2S Z2 = j0.475

ZR2 = j0.21

I2R

I0R

ZR0 = j0.25

I1S Z1 = j0.455

ZR1 = j0.20

I1R

N1

I1

I2

I0
 

From this diagram, we can see that I1 = I2 = I0. We can 
solve for I1 as follows: 

 ( ) ( )1

2 0

1.05I
j0.455 || j0.20 j0.475 || j0.21 j0.25

1.964 –90 pu I I

= =
+ +

∠ = =
  

Convert from the sequence domain to the phase domain as 
follows: 

 
A 0 1 2 2

2
B 0 1 2

2
C 0 1 2

I I I I 3I 5.893 –90 pu

I I I I 0

I I I I 0

= + + = = ∠

= +α +α =

= +α +α =

  

Convert the phase currents from per unit to amperes by 
multiplying by Ibase_buses. 

 
A

B

C

I 5.893• 4183.7 24.656 –90 kA
I 0
I 0

= = ∠
=
=

  

IV-h For an A-phase-to-ground fault, find the maximum 
positive-, negative-, and zero-sequence current 
contributions from Source S and Source R. 

To find the contributions from Source S and Source R, 
perform a current divider using the sequence currents. 

 

1S 1

1R 1

2S 2

2R 2

0S

0R 0

j0.20I I 0.5997 –90 pu
j0.20 j0.455

j0.455I I 1.364 –90 pu
j0.20 j0.455

j0.21I I 0.602 –90 pu
j0.21 j0.475

j0.475I I 1.362 –90 pu
j0.21 j0.475

I 0
I I 1.964 –90 pu

 
= = ∠ + 

 
= = ∠ + 

 
= = ∠ + 

 
= = ∠ + 

=

= = ∠
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IV-i Find the phase voltages at the fault location during an 
A-phase-to-ground fault. 

First, find the sequence voltages at the fault location by 
writing voltage drop equations around each loop, as shown in 
the following equations and figure. 

 
( )
( )
( )

F1 1 1 1 R1

F2 2 2 R 2

F0 0 R0

V V I Z || Z

V 0 I Z || Z

V 0 I Z

= −

= −

= −

  

 
( ) ( )

( ) ( )
( ) ( )

F1

F2

F0

V 1.05 1.964 –90 • j0.1389 0.777 pu

V 0 1.964 –90 • j0.1456 0.286 pu

V 0 1.964 –90 • j0.25 0.491 pu

= − ∠ =

= − ∠ = −

= − ∠ = −

  

+

–

Z1 || ZR1I1

V1 = 1.05 pu

Z2 || ZR2

ZR0

I2

N1

N2

N0

–

VF2

+

–

+

VF0

+I0

VF1

–

 

Convert from the sequence domain to the phase domain as 
follows: 

 
FA F0 F1 F2

2
FB F0 F1 F2

2
FC F0 F1 F2

V V V V 0

V V V V 1.178 –128.66 pu

V V V V 1.178 128.66 pu

= + + =

= +α +α = ∠

= +α +α = ∠

  

V.  EXAMPLE 4: CHANGING BASES 
This example shows the importance of using the right base 

when computing symmetrical components. Typical textbook 
examples use an A-phase base, which always assumes an 
A-phase-to-ground, B-phase-to-C-phase, B-phase-to-C-phase-
to-ground, or three-phase fault. For other fault types, the base 
will need to be changed accordingly in order to compute the 
correct symmetrical components. 

This example shows a B-phase-to-ground fault that 
occurred on a transmission line. Open the event record titled 
Example 4.cev, and view the symmetrical components during 
the fault. 

V-a Are the symmetrical component currents what we 
expect to see for a phase-to-ground fault? 

Because the sequence networks are connected in series for 
a phase-to-ground fault, we expect to see I1 = I2 = I0. For this 
event, the symmetrical components are each 120 degrees out 

of phase with each other, as shown in the following figure. 
This is not correct. 

 

V-b Derive the symmetrical components for an A-phase-
to-ground fault. 

Typical textbooks as well as the introduction to this paper 
use (1) to derive symmetrical components from phase 
quantities. This method assumes an ABC system phase 
rotation as well as an A-phase reference or base. An A-phase 
base means that the A-phase is in the top position of the phase 
current matrix followed by B-phase and C-phase for a system 
with an ABC phase rotation. An A-phase base is only valid for 
A-phase-to-ground, B-phase-to-C-phase, B-phase-to-C-phase-
to-ground, or three-phase faults.  

Because an A-phase-to-ground fault assumes IB = IC = 0, 
then: 

 0 1 2 A
1I I I I
3

= = =   

This results in the zero-, positive-, and negative-sequence 
currents being equal and in phase with each other, which is 
what we expect. Equation (1) works fine when the fault is an 
A-phase-to-ground fault. 

V-c Derive the symmetrical components for a B-phase-to-
ground fault. 

Use (1) to calculate symmetrical components for a 
B-phase-to-ground fault. 

Because a B-phase-to-ground fault assumes IA = IC = 0, 
then: 

 

0 B

1 B

2
2 B

1I I
3
1I I
3
1I I
3

=

= α

= α

  

The unexpected result is that I0, I1, and I2 are 120 degrees 
out of phase instead of in phase with each other. This matches 
the phasors in the figure from the answer to Question V-a and 
is incorrect, which proves that (1) does not work for a 
B-phase-to-ground fault. 



11 

 

V-d How do we obtain the correct symmetrical component 
values for a B-phase-to-ground fault? 

To correctly calculate the symmetrical components for 
something other than the typical A-phase base faults, we must 
change the base in (1). This is done by rotating the terms in 
the phase current matrix so that the top position is the 
reference, the middle term lags the reference by 120 degrees, 
and the bottom term leads the reference by 120 degrees.  

For a B-phase base on a system with an ABC system phase 
rotation, the new equation is as follows: 

 
0 B

2
1 C

2
2 A

1 1 1I I
1I 1 I
3

I I1

    
    = α α    
    α α    

  

Using this new transformation equation and assuming that 
IA = IC = 0 for a B-phase-to-ground fault, we obtain: 

 0 1 2 B
1I I I I
3

= = =   

Notice that I0, I1, and I2 are all in phase with each other, 
which is what we expect to see for a phase-to-ground fault. 

V-e Why did the symmetrical components in 
ACSELERATOR Analytic Assistant not calculate 
correctly? 

The event viewer needs to know what base to use when 
calculating symmetrical components. If the correct base is not 
selected, the symmetrical components will calculate 
incorrectly, as we demonstrated in this example. The 
following figures show that selecting B Phase as the base in 
ACSELERATOR Analytic Assistant will make the sequence 
phasors come in line with each other. 

 

 

When viewing symmetrical components in ACSELERATOR 
Analytic Assistant, it is very important to always select the 
correct base. For a single-phase-to-ground fault, the correct 
base is the faulted phase. For a phase-to-phase or double-line-
to-ground fault, the correct base is the unfaulted phase. For a 
three-phase fault, the base selection does not matter. 

VI.  EXAMPLE 5: PHASE ROTATION 
This example shows the importance of phase rotation when 

calculating sequence quantities. The event titled 
Example 5.cev is a simulated load condition on an SEL-351S 
Protection System. The trip equation in the relay is: 

TR =51P1T + 51G1T + 67P1 + 50Q1 + OC 
where 50Q1 is a negative-sequence instantaneous 

overcurrent element. 

VI-a What is the pickup setting for 50Q1 in the relay? 
Based on the negative-sequence current seen in the 
event, should the relay have tripped? 

From the relay settings, we can see that 50Q1P = 3 A 
secondary. The following figure is from the SEL-351S 
Instruction Manual and shows that the 50Q1 element asserts 
when 3 • I2 becomes greater than the 50Q1P setting. 

Setting
50Q1P –

+3I2

Relay 
Word 
Bits

50Q1

Directional Control
(asserted to logical 1 

continuously if E32 = N)

SELOGIC® 
Control 

Equation 
Setting

SELOGIC Control 
Equation

 Torque Control
67Q1TC

67Q1

67Q1T
67Q1D

0
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The phasors in the event show that I2 is about 600 A 
primary, as shown in the following figure. 

 

With a current transformer (CT) ratio of 120, the measured 
3 • I2 comes out to 15 A secondary. 

 
23I 3•599.4 1798 A primary

1798 A primary 15 A secondary
120

= =

≅
  

This is greater than the pickup value of 3 A secondary, so it 
looks as if the relay should have tripped for this condition. 

The following event report shows that although the 
negative-sequence current magnitude is significantly above 
the pickup, the 50Q1 element did not assert and the relay did 
not issue a trip. 

 

VI-b Using the phase currents from the event, calculate the 
negative-sequence current I2. 

To convert phase currents to symmetrical components, use 
(1). Using the phase currents from the previous figure, 
calculate the negative-sequence component. 

 ( )2
2 A B C

1I I I I
3

= +α +α   

 ( ) ( ) ( )2
2

1I 599.1 330 599.2 90 599.9 210.1
3

599.4 –30 A

 = ∠ +α ∠ +α ∠ 

= ∠
  

This matches the negative-sequence current shown in the 
second figure in the answer to Question VI-a. 

VI-c Is it normal to see this much negative-sequence current 
during unfaulted conditions? 

No. A large amount of negative-sequence current or 
voltage that appears in normal load metering along with a very 
small amount of positive-sequence current or voltage is cause 
for suspicion.  

VI-d What is the phase rotation of the system? Does this 
match the phase rotation setting in the relay? 

A large amount of negative-sequence current with a small 
amount of positive-sequence current seen during normal 
conditions is normally a system phase rotation issue. The 
following figure shows the phasors during the event. As the 
phasors rotate in a counterclockwise direction, the order in 
which they pass a reference point is A-phase, then C-phase, 
and then B-phase. This means the system has an ACB phase 
rotation. 

 

The settings in the relay also show that the global setting 
PHROT is set to ACB, which is correct and matches the event 
phasors. 
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VI-e Why is ACSELERATOR Analytic Assistant calculating 
high negative-sequence quantities? 

When viewing events in ACSELERATOR Analytic Assistant, 
the symmetrical components of the voltages and currents that 
are displayed are calculated based on the phase quantities. 
Because of this, we must tell the software the phase rotation of 
the system, which can be done under the Options menu, as 
shown in the following figure.  

 

The following figure shows the symmetrical components 
after changing the phase rotation in ACSELERATOR Analytic 
Assistant to ACB. Notice the negative-sequence current is 
now very small and the positive-sequence current is very high. 
This is the opposite of the results we saw when we assumed 
an ABC system phase rotation. 

 

VI-f Calculate the negative-sequence current by hand using 
ACB phase rotation. 

For ACB phase rotation, (1) needs to be modified by 
putting the currents in the phase matrix in ACB order, as 
follows: 

 
0 A

2
1 C

2
2 B

1 1 1I I
1I 1 I
3

I I1

    
    = α α    
    α α    

  

 ( )2
2 A C B

1I I I I
3

= +α +α   

 ( ) ( ) ( )2
2

1I 599.1 330 599.9 210.1 599.2 90
3

0.45 147 A

 = ∠ +α ∠ +α ∠ 

= ∠
  

Notice that this does not exactly match the results for I2 in 
the second figure in the answer to Question VI-e. This is due 
to a rounding error that comes into play because I2 has such a 
small magnitude (0.6 A primary). The accuracy of the phase 
currents (IA, IB, and IC) we are using in our hand calculations 
is limited to the number of significant digits displayed by the 
software. The difference between the hand-calculated results 
and the ACSELERATOR Analytic Assistant results is due to the 
fact that ACSELERATOR Analytic Assistant is actually using 
more significant digits for the phase currents. The important 
thing to note is that when the correct phase rotation is used, 
the traditional method matches ACSELERATOR Analytic 
Assistant and results in extremely small (and negligible) 
values of negative-sequence current. 

VI-g Why did the relay not trip? 

The relay did not trip because there was very little 
negative-sequence current present. The relay was calculating 
the negative sequence correctly because it knew the phase 
rotation was ACB (setting PHROT = ACB). ACSELERATOR 
Analytic Assistant, however, needs to be told the correct phase 
rotation in order to calculate the symmetrical components 
correctly. 
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VII.  EXAMPLE 6: FAULT LOCATOR 
This example shows how to use symmetrical components 

to determine a fault location using event reports from two ends 
of a transmission line. An internal single-line-to-ground fault 
was detected on a transmission line by the relays at both ends, 
as shown in Fig. 9. The event reports from each relay are 
provided in the event records titled Example 6 - Side S.eve 
and Example 6 - Side R.eve. 

S R

m

S R

 

Fig. 9. Fault location on a two-source power system 

VII-a Draw the sequence networks for this fault. 

Because the fault is a line-to-ground fault, the sequence 
networks are connected in series at the fault point, as shown in 
the following figure. The distance to the fault in per unit of 
total line length is m. The flags mark the relay positions. 

Z1S

E1S

m • Z1L

N1

N2

N0

E1R

(1 – m) • Z1L Z1R

I2S I2RZ2S m • Z2L (1 – m) • Z2L Z2R

–
V2S
+

–
V2R
+V2F

I0S I0RZ0S m • Z0L (1 – m) • Z0L Z0R

–
V0S
+

–
V0R
+V0F

3RF

I1S I1R

 

VII-b Using the sequence networks, write an equation to 
solve for the fault location m. 

Any of the sequence networks can be used to solve for the 
fault location, but the negative-sequence network is preferred 
because it is not affected by load flow or zero-sequence 
mutual coupling. 

To solve for m, write two voltage drop equations at the V2F 
fault location—one between node V2F and the S relay and one 
between node V2F and the R relay. These equations are as 
follows: 
 2S 2S 2L 2FV I • m • Z V− =   

 ( )2R 2R 2L 2FV I • 1 m • Z V− − =   

Because we have event reports from both ends of the line, 
the negative-sequence voltages and currents as well as the 

negative-sequence line impedance (from the relay settings) are 
known. This results in two equations and two unknowns (V2F 
and m). 

Because both equations are equal to V2F, we can eliminate 
this unknown variable by setting the equations equal to each 
other. 

 ( )2S 2S 2L 2R 2R 2LV I • m • Z V I • 1 m • Z− = − −   

Then rearrange to solve for m. 

 
( )

( )

2S 2R 2R 2L 2S 2L 2R 2L

2S 2R 2R 2L

2L 2S 2R

V V I • Z m I • Z I • Z
V V I • Z

m
Z I I

− + = +

− +
=

+

  

VII-c Use the event reports to obtain voltage and current 
values during the fault as well as the negative-
sequence line impedance. Solve for m. 

V2S and I2S (magnitude and angle) can be found from the 
Example 6 – Side S.eve event during the time of the fault. It 
is best to select values that are stable and unchanging. In this 
event, stable data are found between 4.75 and 6.75 cycles, as 
shown between the two dashed blue vertical lines in the 
following figure. 

 

 

Because this is a C-phase-to-ground fault, we must select 
values on a C-phase base. 

From this event, we gather the following: 
 2SI 368.7 96.9 A= ∠   

 2SV 8.2 355.6 kV= ∠   
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V2R and I2R (magnitude and angle) can be found in a similar 
way from the Example 6 – Side R.eve event during the time 
of the fault. 

 

From this event, we gather the following: 
 2RI 805.3 93.5 A= ∠   

 2RV 16.0 356.5 kV= ∠   

From the event report relay settings, we can find that 
R1 = R2 = 16.77 and X1 = X2 = 65.21 (note that if these 
settings are in ohms secondary, they must be converted to 
ohms primary). Converting from the rectangular form of 
16.77 + j65.21 to the polar form, we obtain the following: 
 2LZ 67.33 75.58 = ∠ Ω   

We can then plug these data into the following equation to 
solve for the fault location m. 

 
( )

2S 2R 2R 2L

2L 2S 2R

V V I • Zm
Z I I
− +

=
+

  

 ( ) ( ) ( ) ( )
( )

m
8200 355.6 16000 356.5 805.3 93.5 • 67.33 75.58

67.33 75.58 368.7 96.9 805.3 93.5
0.78 pu

=

∠ − ∠ + ∠ ∠
∠ ∠ + ∠

=

  

From the LL setting in the relay, we see that the line length 
is 82 miles. 0.78 • 82 miles gives us a fault location of 
63.96 miles from Side S. 

Now that the fault location m is known, it is possible to use 
the same sequence networks to solve for the fault resistance, if 
desired. The figure in the answer to Question VII-a will now 
have all known impedances, with the exception of the fault 
resistance, 3RF. For more information on fault location 
algorithms and symmetrical components, see [10], [11], and 
[12]. 

VIII.  EXAMPLE 7: TRANSFORMER LINE-TO-GROUND FAULT 
This example shows how to derive the phase shift, 

symmetrical components, and fault currents across a delta-wye 
transformer. The event report titled Example 7.cev was 
generated after a current differential relay protecting a Dy1 
transformer tripped, as shown in Fig. 10. Although the 
misoperation of the relay is not the focus of this exercise, it 
was caused by incorrect winding current compensation 
settings in the relay. 

115 13.2 kV
10.5 MVA

87
W1 W2

 

Fig. 10. Transformer current differential relay protecting a Dy1 transformer 

VIII-a What type of fault is this? Assuming a radial system, 
is the fault internal or external to the zone of 
protection? 

It is a C-phase-to-ground fault on the wye side of the 
transformer. The fault is external because both relay CTs see 
fault current. The following figure shows the waveform for an 
external C-phase-to-ground fault. 

 

VIII-b Do we expect the prefault currents on the delta side to 
lead or lag the currents on the wye side? 

The example states that it is a Dy1 transformer. This 
standard means that the delta side leads the wye side by 
(1 • 30) = 30 degrees for the prefault balanced phasors. 
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VIII-c The transformer is connected to the system as shown 
in Fig. 11. Does this change the current lead/lag 
relationship we expect to see across the transformer? If 
so, how? 

C

B

A

C

B

A

c

b

a

H1

H2

H3

X1

X2

X3

X0

ICW1

IBW1

IAW1

ICW2

IBW2

IAW2

 

Fig. 11. Transformer phase-to-bushing connections 

The standard assumption that a Dy1 transformer delta side 
leads the wye side by 30 degrees is only valid when three 
conditions are true: 

1. The system has an ABC phase rotation. 
2. The A-phase on the system goes to H1 and X1 on the 

transformer, the B-phase on the system goes to H2 and 
X2 on the transformer, and the C-phase on the system 
goes to H3 and X3 on the transformer. 

3. The A-phase on the system goes to the A-phase on the 
relay, the B-phase on the system goes to the B-phase 
on the relay, and the C-phase on the system goes to 
the C-phase on the relay. 

In this case, Condition 2 is not true. This means that the 
standard of delta leading wye by 30 degrees is not necessarily 
true. 

We can easily trace through any transformer connection to 
derive the lead/lag relationship between currents on either 
side. First, assume current flow through the transformer from 
the delta side to the wye side. Knowing that the individual 
phase windings of the delta side are magnetically coupled to 
the individual windings of the wye side and assuming a 
transformer ratio of 1:1, we can conclude that the currents 
through them are the same. We can then write KCL equations 
to derive the currents on the phases coming into the delta 
winding. The derivation of this KCL equation for the delta-
side C-phase current is shown in the following figure. 

C

B

A

c

b

a

c

b

a

H1

H2

H3

X1

X2

X3

X0

ICW1

IBW1

IAW1

ICW2

IBW2

IAW2

IC ic ic

ib ib

IC + ib = ic
IC = ic – ib

–ib

ic

ib

ia

ic – ib
(IC)

 

The result shows that the high-side (delta) currents are 3  
larger and lag the low-side (wye) currents by 30 degrees. The 
positive-sequence currents reflect the same behavior. 

VIII-d Draw the phasors for the prefault currents we expect to 
see on the system as well as the currents coming into 
the relay. Do these match the prefault phasors in the 
event? 

The prefault current phasors are shown in the following 
figure, with Winding 1 being the delta side and Winding 2 
being the wye side. The left diagram shows the prefault 
currents seen on the system, and the right diagram shows the 
prefault currents seen by the relay. Note that the Winding 1 
currents are 180 degrees out of phase from the Winding 2 
currents when seen by the relay because the CT polarity of 
Winding 1 is opposite that of Winding 2. 

ICW1

ICW2

IBW1 IBW2

IAW2

IAW1 ICW1

ICW2 IBW1

IBW2

IAW2

IAW1
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The phasors seen by the relay match the event, as shown in 
the following figure. 

 

VIII-e Draw the phasors that we expect to see on the system 
as well as the phasors coming into the relay during the 
fault. Does this match what the event shows? 

Working from right to left, we can trace the fault through 
the transformer in a way similar to what we did with the 
prefault currents. This is shown in the following figure, 
assuming load is negligible on the unfaulted phases and the 
transformer ratio is 1:1. 
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The phasors in the event, shown in the following figure, 
match what we expect to see. IAW1 and ICW1 are equal in 
magnitude and 180 degrees out of phase. ICW1 and ICW2 are 
also 180 degrees out of phase. 

 

VIII-f Look at the symmetrical components in the event. 
Derive these phasors by drawing the sequence network 
of the fault. 

The sequence current phasors during the fault are shown in 
the following figure. Note that we must select a C-phase base 
when viewing the sequence phasors because this is a C-phase-
to-ground fault. 
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The following figure shows the sequence network diagram 
for this fault, with the flags marking the CT locations. 
Because this is a phase-to-ground fault, all three sequence 
networks are connected in series. From this diagram, we 
notice that there is no zero-sequence current flowing through 
the CT on the delta side. This is why there is no zero-sequence 
current phasor for Winding 1 in the previous figure. 

ZT1

N1

+

–

I1Y

ZT2
I2Y

N2

ZT0

N0

I0Y

 

The phase currents used by the 87 elements in the relay are 
a combination of positive-, negative-, and zero-sequence 
currents. If the relay has wye CTs, we must remove the zero-
sequence current from Winding 2 inside the relay because the 
zero-sequence current is removed from Winding 1 due to the 
delta connection of the transformer. If we use a delta CT on 
the Winding 2 side, this would have the same effect. A 
restricted earth fault (REF) element or ground relay on the X0 
bushing can be used in order to detect sensitive ground faults 
on the wye side of the transformer.  

It is important to note that this network represents a phase-
to-ground fault on the wye side of the transformer. This means 
we need to solve for the sequence currents going through the 
wye side first and then apply a delta transformation to solve 
for the currents going through the delta side. 

Because this is a C-phase-to-ground fault, we need to use a 
C-phase base, so our transformation equation becomes (with 
an ABC system phase rotation): 

 
0Y CY

2
1Y AY

2
2Y BY

1 1 1I I
1I 1 I
3

I I1

    
    = α α    
    α α    

  

 

( )0Y CY AY BY

AY BY

0Y CY

0Y 1Y 2Y

1I I I I
3
I I 0

1I I
3

I I I

= + +

= =

=

= =

  

This solves for the sequence currents on the wye side of the 
transformer. In the first figure in this answer, we can see that 
all three sequence phasors on the wye side (Winding 2) are 
equal in magnitude and phase, which is expected from the 
equations we derived. We can also see that the magnitude of 
the sequence phasors is about 1/3 that of the C-phase current 
on Winding 2. 

Earlier, we derived that the currents on the delta side of the 
transformer are going to be 3  greater in magnitude and 
lagging the wye-side currents by 30 degrees in the positive 
sequence (leading by 30 degrees in the negative sequence). 
This is represented in the following figure by taking the 
currents through the networks and transforming them through 
a CT that applies the appropriate magnitude increase and 
angle shift. The sequence currents seen on the delta side are 
after the CT transformation. 
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The sequence phasors that we expect to see on the system 
are shown in the following figure. Notice that I1Δ is 3  
greater in magnitude and lags I1Y by 30 degrees, while I2Δ is 

3  greater in magnitude and leads I2Y by 30 degrees. Due to 
the CT polarity, we rotate the delta currents on the system by 
180 degrees to see what the relay sees. 

I1Y
I2Y
I0Y

∆1I  System∆2I  Relay

∆1I  Relay ∆2I  System

 

This matches the sequence phasors from the event, as 
shown in the first figure in this answer. Note that in the event, 
the delta currents are not 3  greater in magnitude than the 
wye currents, as we expect. This is because the 3  difference 
is based on an assumed transformer turns ratio of 1:1. The 
transformer turns ratio is calculated as: 

 

13.2 kV
3n 0.0662

115 kV
= =   
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We can now expect the delta currents to be n 3  greater 
than the wye currents, or 0.1147 times greater. It is also 
important to note that this relationship is true for amperes 
primary, so we need to convert the amperes secondary given 
in the event to amperes primary. 

For example, we expect I1Δ to be 0.1147 multiplied by I1Y 
in amperes primary. The event report shows I1Δ = 1.3 A 
secondary and I1Y = 2.0 A secondary during the fault. 
Multiplying each winding current by its CT ratio (40:1 for the 
delta winding and 240:1 for the wye winding), we obtain 
I1Δ = 52 A primary and I1Y = 480 A primary. I1Y (480 A) 
multiplied by 0.1147 gives approximately I1Δ (52 A). 

VIII-g Using the sequence components, work backwards to 
derive the phase fault currents on the delta and wye 
sides of the transformer. 

Because we are using the C-phase as a base, our 
transformation equation is as follows: 
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1 1 1I I
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= +α +α
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These computations can be done mathematically or 
graphically. The graphical method is shown here. For the wye 
currents, we first draw the sequence phasors shifted by α and 
α2 that we will need, as shown in the following figure. 

I1Y
I2Y
I0Y

1Y 2YI   Iα α

2 2
2Y 1YI   Iα α  

We then apply the transformations, as shown in the 
following figure. 

= + +CY 0Y 1Y 2YI I I I

I0Y I1Y I2Y

2
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2
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For the delta currents, we first draw the sequence phasors 
shifted by α and α2 that we will need, as shown in the 
following figure. 
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We then apply the transformations, as shown in the 
following figure. 

∆ ∆ ∆ ∆= + +C 0 1 2I I I I ∆ ∆ ∆ ∆= + α + α2
A 0 1 2I I I I

∆CI

∆2I ∆1I

∆AI

∆α2
1I

∆α 2I

0 0

∆ ∆ ∆ ∆= + α + α =2
B 0 1 2I I I I 0

0

∆α 1I ∆α2
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Combining the results of the phase currents on the delta 
side and wye side, we get the phasors shown in the following 
figure. This matches the phase currents during the event, as 
shown in the last figure in the answer to Question VIII-e. 

∆CI
∆AI

CYI  

IX.  EXAMPLE 8: TRANSFORMER PHASE-TO-PHASE FAULT 
This example shows how to derive the phase shift, 

symmetrical components, and fault currents across a delta-wye 
transformer. The event report titled Example 8.txt was 
generated after a current differential relay protecting a delta-
wye transformer tripped, as shown in Fig. 12. The 
misoperation of the relay is not the focus of this exercise. 

W2 W1
87

 

Fig. 12. Transformer current differential relay protecting a delta-wye 
transformer 

IX-a What type of fault is this? Assuming a radial system, 
is the fault internal or external to the zone of 
protection?  

It is a B-phase-to-C-phase fault on the wye side of the 
transformer. The fault is external because both relay CTs see 
fault current. 
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IX-b The transformer is connected to the system as shown 
in Fig. 13. Do we expect the currents on the delta side 
to lead or lag the currents on the wye side? 
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Fig. 13. Transformer phase-to-bushing connections 

We can easily trace through any transformer connection to 
derive the lead/lag relationship between currents on either 
side. First, assume current flow through the transformer from 
the delta to the wye side. Knowing that the individual phase 
windings of the delta side are magnetically coupled to the 
individual windings of the wye side and assuming a 
transformer ratio of 1:1, we can conclude that the currents 
through them are the same. We can then write KCL equations 
to derive the currents on the phases coming into the delta 
winding. The derivation of this KCL equation for the delta-
side C-phase current is shown in the following figure. 
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The result shows that the Winding 2 (delta) currents lag the 
Winding 1 (wye) currents by 30 degrees. 

IX-c Draw the phasors for the prefault currents expected on 
the system as well as the phasors coming into the 
relay. 

The prefault current phasors are shown in the following 
figure, with Winding 1 being the wye side and Winding 2 
being the delta side. The left diagram shows the prefault 
current seen on the system, and the right diagram shows the 
prefault currents seen by the relay. Note that the Winding 2 
currents are 180 degrees out of phase from the Winding 1 
currents when seen by the relay because the CT polarity of 
Winding 2 is opposite that of Winding 1. 
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IX-d Draw the phasors expected on the system as well as 
coming into the relay during the fault. Does this match 
what the event shows? 

Working from right to left, we can trace the fault through 
the transformer in a way similar to what we did with the 
prefault currents. This is shown in the following figure, 
assuming load is negligible on the unfaulted phases and the 
transformer ratio is 1:1. 
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The phasors in the event, shown in the following figure, 
match what we expect to see. IBW1 is 180 degrees out of 
phase with ICW1, and IAW2 and IBW2 are in phase. ICW2 is 
180 degrees out of phase with and twice the magnitude of 
IAW2 and IBW2. 

 

IX-e Look at the sequence phasors in the event. Derive 
these phasors by drawing the sequence network of the 
fault.  

The sequence current phasors during the fault are shown in 
the following figure. Note that we must select an A-phase base 
when viewing the sequence phasors because this is a B-phase-
to-C-phase fault. 

 

The following figure shows the sequence network diagram 
for this fault, with the flags marking the locations of the CTs 
on either side of the transformer. Because this is a phase-to-
phase fault, the positive- and negative-sequence networks are 
connected in parallel.  
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It is important to note that this network represents a phase-
to-phase fault on the wye side of the transformer. This means 
we need to solve for the sequence currents going through the 
wye side first and then apply a delta transformation to solve 
for the currents going through the delta side. 

Because this is a B-phase-to-C-phase fault, we need to use 
an A-phase base, so our transformation equation becomes: 
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This solves for the sequence currents on the wye side of the 
transformer. In the first figure in this answer, we can see that 
the positive- and negative-sequence phasors on the wye side 
(Winding 1) are equal in magnitude and 180 degrees out of 
phase, which is expected from the equations we derived. We 
can also see that the positive-sequence phasor is about 3 3  
times higher than the B-phase current on the wye side and 
leading by 90 degrees. Likewise, the negative-sequence 
phasor is about 3 3  times higher than the B-phase current 
on the wye side and lagging by 90 degrees.  
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Earlier, we derived that the currents on the delta side of the 
transformer are going to be 3  greater in magnitude and 
lagging the wye-side currents by 30 degrees in the positive 
sequence (leading by 30 degrees in the negative sequence). 
We represented this in the previous figure by taking the 
currents through the networks and transforming them through 
a CT that applies the appropriate magnitude increase and 
angle shift. The sequence currents seen on the delta side are 
after the CT transformation. 

We can then draw the sequence phasors that we expect to 
see on the system, as shown in the following figure. Notice 
that I1Δ is 3  greater in magnitude and lags I1Y by 30 degrees, 
while I2Δ is 3  greater in magnitude and leads I2Y by 
30 degrees. Due to CT polarity, we rotate the delta currents on 
the system by 180 degrees to see what the relay sees. 

I1Y

∆1I  System∆2I  System

∆1I  Relay ∆2I  Relay

I2Y

 

This matches the sequence phasors from the event, as 
shown in the first figure in this answer. Note that in the event, 
the delta currents are not 3  greater in magnitude than the 
wye currents, as we expect. This is because the 3  difference 
is based on an assumed transformer turns ratio of 1:1. See 
Example 7 for an explanation of how the transformer turns 
ratio affects the current magnitude relationship between the 
wye and delta sides. 

IX-f Using the sequence components, work backwards to 
derive the phase fault currents on the delta and wye 
sides of the transformer. 

Because we are using the A-phase as a base, our 
transformation equation is as follows: 
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These computations can be done mathematically or 
graphically. The graphical method is shown here. For the wye 
currents, we first draw the sequence phasors shifted by α and 
α2 that we will need, as shown in the following figure. 
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We then apply the transformations, as shown in the 
following figure. 
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For the delta currents, we first draw the sequence phasors 
shifted by α and α2 that we will need, as shown in the 
following figure. 
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We then apply the transformations, as shown in the 
following figure. 
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Combining the results of the phase currents on the delta 
and wye sides, we get the phasors shown in the following 
figure. This matches the phase currents during the event, as 
shown in the second figure in the answer to Question IX-d. 
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